Смекни!
smekni.com

Расчет трехкорпусной выпарной установки непрерывного действия (стр. 4 из 6)

Для определения

строим графическую зависимость тепловой нагрузки q от разности температур между паром и стенкой (см. рис. 1.1) и определяем
= 1,1 ºС.

Проверка:

Как видим

Рассчитываем коэффициент теплопередачи К1 в первом корпусе:

Коэффициент теплопередачи для второго корпуса К2 и третьего К3 можно рассчитывать так же , как и коэффициент К1 или с достаточной точностью воспользоваться соотношением коэффициентов , полученных из практики ведения процессов выпаривания .Эти соотношения варьируются в широких пределах:

К1 : К2 : К3 = 1 :(0,85

0,5)
(0,7
0,3)

Поскольку – СaCl2 –соль, соотношение коэффициентов принимаем по верхним пределам.

К1 : К2 : К3 = 1 : 0,85: 0,7

К2 = К1

0,85 = 1096,5
0,85 =932

К3 = К1

0,7 = 767,55

1.7 Распределение полезной разности температур

Полезные разности температур в корпусах установки находим из условия равенства их поверхностей теплопередачи:


, (1.21)

где

– общая полезная разность температур выпарной установки;
– отношение тепловой нагрузки к коэффициенту теплопередачи в корпусе; i = 1,2,3 – номер корпуса.

Проверим общую полезную разность температур установки:

Поскольку рассчитаны величины тепловых нагрузок, коэффициентов теплопередачи и полезной разности температур по корпусам, следовательно, можно найти поверхность теплопередачи выпарных аппаратов:


Полученные значения поверхности теплопередачи сравниваем с определенной ранее ориентировочной поверхностью Fор=49 м2. Различие незначительное. Значит, размеры выпарных аппаратов выбраны правильно.

По ГОСТ 11987 выбираем аппарат с поверхностью теплообменаF=63м2и длиной труб Н = 4 м. Основные технические характеристики выпарного аппарата представлены в таблице 1.6.

Таблица 1.6 – Техническая характеристики выпарного аппарата.

F при диаметре трубы 38х2 и длинеН= 4000мм Диаметргреющей камерыD, мм Диаметр сепаратораDс, мм Диаметр циркуляционной трубы D2, мм Высота аппаратаНа , мм
63 800 1600 500 15500

1.8 Определение толщины тепловой изоляции

Толщину тепловой изоляции

находим из равенства удельных тепловых потоков через слой изоляции в окружающую среду:

, (1.22)

где

– коэффициент теплоотдачи от внешней поверхности изоляции к воздуху, Вт/(м2 К)
;

– температура изоляции со стороны воздуха, °С; Для аппаратов, работающих внутри помещения
выбирают в пределах 35 ÷ 45 ºС, а для аппаратов, работающих на открытом воздухе в зимнее время – в интервале 0 ÷ 10 ºС.;

– температура изоляции со стороны аппарата, ºС (температуру tст1 можно принимать равной температуре греющего пара, ввиду незначительного термического сопротивления стенки аппарата по сравнению с термическим сопротивлением слоя изоляции);

– температура окружающей среды (воздуха), ºС;

– коэффициент теплопроводности изоляционного материала, Вт/(мК).

В качестве изоляционного материала выбираем совелит, который содержит 85% магнезии и 15 % асбеста. Коэффициент теплопроводности совелита

Толщина тепловой изоляции для первого корпуса:

Такую же толщину тепловой изоляции принимаем для второго и третьего корпусов.

2. Расчет вспомогательного оборудования

2.1 Расчет барометрического конденсатора

Для создания вакуума в выпарных установках применяют конденсаторы смешения с барометрической трубой. В качество охлаждающего агента используют воду, которая подается в конденсатор чаще всего при температуре окружающей среды (около 20 ºС). Смесь охлаждающей воды и конденсата выходит из конденсатора по барометрической трубе. Для поддержания постоянного вакуума в системе вакуум-насос постоянно откачивает неконденсирующиеся газы.

2.1.1 Определение расхода охлаждающей воды

Расход охлаждающб ей воды Gв (в кг/с) определяем из теплового баланса конденсатора:

, (2.1)

где

– энтальпия пара в барометрическом компенсаторе, кДж/кг;

– теплоёмкость воды, кДж/(кг К);

С в =4190 кДЖ/(кгК);

- начальная температура охлаждающей воды, ºС;

tн = 10

20 ºС

- конечная температура смеси воды и конденсата, ºС.

Разность температур между паром и жидкостью на выходе из конденсатора составляет 3 ÷ 5 град., поэтому конечную температуру воды

принимают на 3 ÷ 5 град. ниже температуры конденсации паров:

ºС

Тогда

2.1.2 Расчет диаметра барометрического конденсатора

Диаметр барометрического конденсатора

‚ определяем из уравнения расхода

, (2.2)

где

– плотность пара, кг/м3 выбираемая по давлению пара в конденсаторе Pбк;

– скорость пара, м/с, принимаемая в пределах 15 ÷ 25 м/с.

По нормалям НИИХИММАШа подбираем барометрический конденсатор диаметром dбк = 600 мм с диаметром трубы dбт = 150 мм.

2.1.3 Расчет высоты барометрической трубы

Скорость воды в барометрической трубе


Высота барометрической трубы

, (2.3)