Смекни!
smekni.com

Виявлення впливу вуглецю на міжатомну взаємодію сплавів на основі заліза і нікелю (стр. 3 из 5)

Для виявлення впливу нікелю поблизу інварного мінімуму провели дослідження сплаву Fe-34,1% Ni. Для діапазону температур 110-300 K ТКЛР сплаву, табл. 3, залишається таким же низьким, як і для сплаву Fe–36,0% Ni. Проте проявляться тенденція до збільшення значення ТКЛР на 10% в цьому діапазоні. При температурі 380 K

суттєво більше ніж у сплаву Fe–36,0% Ni, а в діапазоні 380-500 K ця різниця стає більш суттєвою <
>= 3,1×10-6 K-1, на противагу <
>= 1,7×10-6 K-1 для сплаву Fe–36,0% Ni, табл. 3. Ці дані добре узгоджуються з тим, що при зменшенні концентрації нікелю на декілька відсотків температура Кюрі зміщується в бік низьких температур на кілька десятків градусів, і тим самим звужує зверху діапазон з мінімальним ТКЛР.

Для того, щоб підтвердити вплив Ni ще і в трьохкомпонентному сплаві, провели додаткове дослідження сплаву Fe–36,1% Ni–0,55% C, в якому концентрація нікелю дещо більша. Для діапазону температур 110-500 K <

> на 17% краще ніж в сплаві Fe–35,9% Ni–0,61% C, табл. 3. Хоч при температурі 300 K спостерігається зворотна картина, де ТКЛР сплаву має значення дещо більше. Що також можна пов’язати зі зміщенням точки Кюрі. Використовуючи ці дані можна спроектувати композиційний сплав з низьким значенням ТКЛР в діапазоні температур значно вищих за кімнатну.

Таблиця 3. Значення ТКЛР сплавів, отримані за кривими нагрівання

Позначення сплаву
Fe–36,0% Ni 1,01 1,25 0,03 0,06 0,63 4,54
Fe–34,1% Ni 1,41 1,08 0,04 0,37 0,81 8,09
Fe–35,9% Ni–0,61% C 1,62 4,02 1,76 1,02 0,64 1,91
Fe–36,1% Ni–0,55% C 0,27 4,12 2,49 0,76 0,01 1,41
Fe–29,2% Ni 1,85 12,51 8,80 10,49 10,68 11,32
10,78* 15,26* 15,76* 17,77*
Fe–29,7% Ni–0,97% C 0,01 0,91 2,95 7,81 10,88 16,27
Fe-30,1% Ni-1,18% C 0,61 1,75 3,24 6,95 8,17 15,48
Fe–30,5% Ni–1,5% C 0,55 1,11 2,96 7,08 10,18 15,19
Fe–29,7% Ni–0,83% Mn 6,30 14,02 9,56 11,05 11,09 11,68
11,01* 15,54* 15,89* 17,09*
Fe–29,8% Ni–0,61% Mn 8,13 13,48 9,17 11,07 11,35 11,98
10,43* 15,51* 16,25* 17,73*
Fe–30,2% Ni–0,8% Mn–1,15% C 0,34 1,76 2,64 4,82 6,31 14,82
Fe–30,1% Ni–0,44% Mn–1,22% C 0,47 2,92 3,80 6,50 7,79 16,24

Примітка: * - вимірювання до охолодження перед мартенситним перетворенням

На відміну від ТКЛР звичайного інварного сплаву Fe-36,0% Ni для сплаву з меншим вмістом нікелю, Fe-29,2% Ni , температурна залежність ТКЛР має суттєву відмінність [2] і значення

при 300 K становить 10,8×10-6 K-1 (табл. 3). При температурі 243 K, яка була визначена за дилатометричними даними і магнітною сприйнятливістю [1], протікає мартенситне перетворення і криві охолодження та нагрівання не співпадають.

Принципово інша крива теплового розширення і поведінка залежності

(Т) спостерігається в сплавах з концентрацією нікелю близькою до 30% Ni та додатково легованих вуглецем. Вуглець суттєво знижує мартенситну точку, в результаті чого дилатометричні криві охолодження та нагрівання співпадають [2]. В сплаві Fe–29,7% Ni–0,97% C ТКЛР в температурному діапазоні 110–380 K суттєво зменшився у порівнянні з ТКЛР сплаву Fe–29,2% Ni. Легування сплаву з концентрацією нікелю біля 30% Ni вуглецем до 1 % в декілька разів зменшує його термічне розширення.

В сплаві з більшою концентрацією вуглецю, Fe-30,1% Ni-1,18% C, <

> в діапазоні температур 110–300 K підвищилось до 1,9×10-6 K-1. В інтервалі 300-380 K <
> не змінилось в межах похибки (5,1×10-6 K-1), а значення ТКЛР при температурах 380 К, 400 К, 500 К і відповідне середнє значення <
> в цьому температурному інтервалі зменшились (табл. 3).

Підвищення концентрації С до 1,5% (Fe–30,5% Ni–1,5% C) мало змінило середнє значення ТКЛР (1,5×10-6 K-1) в діапазоні температур 110–300 K у порівнянні з

для сплавів Fe–29,7% Ni–0,97% C і Fe-30,1% Ni-1,18% C (табл. 3). В діапазоні температур 300-380 K <
> = 5,0×10-6 K-1, що близьке до ТКЛР сплавів з 0,97% C та 1,18%C. При більш високих температурах 380 К, 500 К ТКЛР зменшився. у порівнянні з
сплаву з нижчою концентрацією вуглецю.

Підвищення концентрації вуглецю в сплаві Fe–Ni–C від 0,97 до 1,5% змінює

при температурах нижчих за 380 К в межах похибки експерименту і зменшує ТКЛР в діапазоні 380 – 500 К.

Температурна залежність ТКЛР для сплаву з домішкою марганцю, Fe-29,7% Ni-0,83% Mn , подібна залежності

(Т) для сплаву Fe-29,2% Ni [2]. Мартенситне перетворення, яке перешкоджає вимірюванню ТКЛР аустеніту при низьких температурах, починається при Мs = 218 K, що нижче у порівнянні з бінарним Fe-29,2% Ni сплавом (243 К) за рахунок легування Mn.

Для розширення даних про вплив домішки Mn на термічне розширення сплаву Н30 провели дослідження сплаву з дещо меншою концентрацією цього елементу (Fe-29,8% Ni-0,607% Mn). Характер залежності

(T) подібен залежності сплаву Fe-29,2% Ni так і Fe-29,7% Ni-0,83% Mn. Середнє значення ТКЛР при температурі 300 K дещо менше ніж в останньому сплаві і дорівнює 10,4×10-6 K-1, а значення <
> для діапазону 300-500 К майже співпадає (14,9×10-6 K-1). Мартенситне перетворення починається при більш високій температурі Мs = 226 K, що узгоджується з меншою концентрацією марганцю в сплаві.

Для сплавів, які містять марганець та вуглець (Fe–30,2% Ni–0,8% Mn–1,15% C і Fe–30,1% Ni–0,44% Mn–1,22% C) і в яких не відбувається мартенситне перетворення, спостерігається монотонна зміна ТКЛР у відносно широкому температурному інтервалі. При концентрації Mn в сплавах Fe–Ni–Mn–C до 1% в розглянутому діапазоні температур загальний хід залежності

(Т) принципово не змінюється, але існує тенденція до зниження
при температурах, вищих за кімнатну.

Для виявлення впливу C і Mn на магнітні властивості провели температурні дослідження магнітної сприйнятливості та намагніченості насичення ГЦКFe-Ni і Fe-Ni-С сплавів. Після гартування від 1373 K сплав Fe-30,3% Ni має стійку ГЦК структуру за кімнатної температури. Це дає низьку мартенситну точку Мs, значення якої по кривим температурної залежності магнітної сприйнятливості складає 243 K. При легуванні вуглецем цього сплаву, точка мартенситного перетворення зміщується нижче температури кипіння рідкого азоту. Дані кривих магнітної сприйнятливості вказують на підвищення температури Кюрі на 85-95 K в порівняні з бінарним сплавом. Легування цього сплаву домішкою марганцю в кількості 0,83% призводить лише до зниження, як мартенситної точки так і точки Кюрі. При легуванні вуглецем, сплав Fe-30,2% Ni-0,8% Mn-1,15% С, мартенситне перетворення не спостерігається, а температура магнітного перетворення підвищилась на 130 K.

На кривих температурної залежності намагніченості насичення сплавів [1] спостерігається підвищення значень температур Кюрі в порівнянні з кривими магнітної сприйнятливості, за нашим припущенням, це пов’язано з впливом магнітного поля. Але загальна картина впливу елементів на температуру магнітного переходу зберігається.

Для сплавів Fe–Ni, Fe–Ni–C та Fe–Ni–Mn–C контролювали значення коерцитивної сили Hc. Для сплаву Fe-36,0% Ni значення коерцитивної сили при зміні температури від 77 до 300 K не змінюється і становило Hc = 95,5 А/м. При зменшенні концентрації нікелю до 30,3% значення Hc зменшилося на 17% за кімнатної температури. При легуванні вуглецем 0,97% та 1,5% Hc зросло, як за кімнатної температури, так і при температурі кипіння рідкого азоту, що корелює з підвищенням температури Кюрі цих сплавів. Легування домішкою марганцю 0,83% сплаву H30 не змінило значення Hc у порівнянні зі сплавом з 0,97% C. Значення коерцитивної сили сплаву Fe-30,2% Ni-0,8% Mn-1,15% C при температурах 77 та 300 K не змінилось у порівнянні зі сплавом Fe-29,7%Ni-0,97%C.