Смекни!
smekni.com

Очистка промышленных газов от сероводорода (стр. 3 из 7)

Более совершенным аппаратом такого типа является абсорбер (рис. 2), состоящий из ряда горизонтальных труб, орошаемых снаружи водой. Необходимый уровень жидкости в каждом элементе 1 такого аппарата поддерживается с помощью порога 2.

Пластинчатый абсорбер (рис.3) состоит из двух систем каналов: по каналам 1 большого сечения движутся противотоком газ и абсорбент, по каналам 2 меньшего сечения – охлаждающий агент (как правило, вода). Пластинчатые абсорберы обычно изготавливаются из графита, так как он является химически стойким материалом, хорошо проводящим тепло.

Поверхностные абсорберы имеют ограниченное применение вследствие их малой эффективности и громоздкости.

Пленочные абсорберы. Эти аппараты более эффективны и компактны, чем поверхностные абсорберы. В пленочных абсорберах поверхностью контакта фаз является поверхность текущей пленки жидкости. Различают следующие разновидности аппаратов данного типа: 1) трубчатые абсорберы; 2) абсорберы с плоскопараллельной или листовой насадкой; 3) абсорберы с восходящим движением пленки жидкости.

Трубчатый абсорбер (рис.4) сходен по устройству с вертикальным кожухотрубчатым теплообменником. Абсорбент поступает на верхнюю трубную решетку 1, распределяется по трубам 2 и стекает по их внутренней поверхности в виде тонкой пленки. В аппаратах с большим числом труб для более равномерной подачи и распределения жидкости по трубам используют специальные распределительные устройства. Газ движется по трубам снизу вверх навстречу стекающей жидкой пленке. Для отвода тепла абсорбции по межтрубному пространству пропускают воду или другой охлаждающий агент.

Абсорбер с плоскопараллельной насадкой (рис.5). Этот аппарат представляет собой колонну с листовой насадкой 1 в виде вертикальных листов из различного материала (металл, пластические массы и др.) или туго натянутых полотнищ из ткани. В верхней части абсорбера находятся распределительные устройства 2 для равномерного смачивания листовой насадки с обеих сторон.

Абсорбер с восходящим движением пленки (рис.2.1.6) состоит из труб 1, закрепленных в трубных решетках 2. Газ из камеры 3 проходит через патрубки 4, расположенные соосно с трубами 1. Абсорбент поступает в трубы через щели 5. – движущийся с достаточно большой скоростью газ увлекает жидкую пленку в направлении своего движения (снизу вверх), т. е. аппарат работает в режиме восходящего прямотока. По выходе из труб 1 жидкость сливается на верхнюю трубную решетку и выводится из абсорбера. Для отвода тепла абсорбции по межтрубному пространству пропускают охлаждающий агент. Для увеличения степени извлечения применяют абсорберы такого типа, состоящие из двух или более ступеней, каждая из которых работает по принципу прямотока, в то время как в аппарате в целом газ и жидкость движутся противотоком друг к другу. В аппаратах с восходящим движением пленки вследствие больших скоростей газового потока (до 30 – 40 м/сек) достигаются высокие значения коэффициентов массопередачи, но, вместе с тем, гидравлическое сопротивление этих аппаратов относительно велико.

1.2.2 Насадочные абсорберы

Широкое распространение в промышленности в качестве абсорберов получили колонны, заполненные насадкой – твердыми телами различной формы. В насадочной колонне (рис.7) насадка 1 укладывается на опорные решетки 2, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя 3 равномерно орошает насадочные тела и стекает вниз. По всей высоте слоя насадки равномерное распределение жидкости по сечению колонны обычно не достигается, что объясняется пристеночным эффектом – большей плотностью укладки насадки в центральной части колонны, чем у ее стенок. Вследствие этого жидкость имеет тенденцию растекаться от центральной части колонны к ее стенкам. Поэтому для улучшения смачивания насадки в колоннах большого диаметра насадку иногда укладывают слоями (секциями) высотой 2 – 3 м и под каждой секцией, кроме нижней, устанавливают перераспределители жидкости 4.

В насадочной колонне жидкость течет по элементу насадки главным образом в виде тонкой пленки, поэтому поверхностью контакта фаз является в основном смоченная поверхность насадки, и насадочные аппараты можно рассматривать как разновидность пленочных. Однако в последних пленочное течение жидкости происходит по всей высоте аппарата, а в насадочных абсорберах – только по высоте элемента насадки. При перетекании жидкости с одного элемента насадки на другой пленка жидкости разрушается и на нижележащем элементе образуется новая пленка. При этом часть жидкости проходит через расположённые ниже слои насадки в виде струек, капель и брызг. Часть поверхности насадки бывает смочена неподвижной (застойной) жидкостью.

1.2.3 Барботажные (тарельчатые) абсорберы

Тарельчатые абсорберы представляют собой, как правило, вертикальные колонны, внутри которых на определенном расстоянии друг от друга размещены горизонтальные перегородки – тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа.

В настоящее время в промышленности применяются разнообразные конструкции тарельчатых аппаратов. По способу слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны: 1) с тарелками со сливными устройствами и 2) с тарелками без сливных устройств.

Тарельчатые колонны со сливными устройствами. В этих колоннах перелив жидкости с тарелки на тарелку осуществляется при помощи специальных устройств – сливных трубок, карманов и т. п. Нижние концы трубок погружены в стакан на нижерасположенных тарелках и образуют гидравлические затворы, исключающие возможность прохождения газа через сливное устройство.

Принцип работы колонн такого типа виден из рис.8, где в качестве примера показан абсорбер с ситчатыми тарелками. Жидкость поступает на верхнюю тарелку 1, сливается с тарелки на тарелку через переливные устройства 2 и удаляется из нижней части колонны. Газ поступает в нижнюю часть аппарата, проходит последовательно сквозь отверстия или колпачки каждой тарелки. При этом газ распределяется в виде пузырьков и струй в слое жидкости на тарелке, образуя на ней слой пены, являющийся основной областью массообмена и теплообмена на тарелке. Отработанный газ удаляется сверху колонны.

Переливные трубки располагают на тарелках таким образом, чтобы жидкость на соседних тарелках протекала во взаимнопротивоположных направлениях. За последнее время все шире применяют сливные устройства в виде сегментов, вырезанных в тарелке и ограниченных порогом – переливом.

К тарелкам со сливными устройствами относятся: ситчатые, колпачковые, клапанные и балластные, пластинчатые и др.

Колонны с тарелками без сливных устройств (рис.9). В тарелке без сливных устройств газ и жидкость проходят через одни и те же отверстия или щели. На тарелке одновременно с взаимодействием жидкости и газа путем барботажа происходит сток части жидкости на нижерасположенную тарелку – «проваливание» жидкости. Поэтому тарелки такого типа обычно называют провальными. К ним относятся дырчатые, решетчатые, трубчатые и волнистые тарелки.

1.2.4 Распыливающие абсорберы

В абсорберах этого типа тесный контакт между фазами достигается путем распиливания или разбрызгивания различными способами жидкости в газовом потоке.

Полый распиливающий абсорбер (рис.10) представляет собой колонну, в верхней части корпуса 1 которой имеются форсунки 2 для распыливания жидкости (главным образом механические). В распыливающих абсорберах объемные коэффициенты массопередачи быстро снижаются по мере удаления от форсунок вследствие коалесценции капель и уменьшения поверхности фазового контакта. Поэтому оросители (форсунки) в этих аппаратах обычно устанавливают на нескольких уровнях.

К достоинствам полых распиливающих абсорберов относятся: простота устройства, низкое гидравлическое сопротивление, возможность работы с загрязненными газами, легкость осмотра, очистки и ремонта. Недостатки этих аппаратов: невысокая эффективность, значительный расход энергии на распиливание жидкости, трудность работы с загрязненными жидкостями, необходимость подачи больших количеств абсорбента для увеличения количества капель и соответственно – поверхности контакта фаз, низкие допустимые скорости газа, значения которых ограничены уносом капель жидкости.

Распиливающие абсорберы применяются главным образом для поглощения хорошо растворимых газов, так как вследствие высокой относительной скорости фаз и турбулизации газового потока коэффициенты массоотдачи в газовой фазе в этих аппаратах достаточно высоки.

Значительно более эффективными аппаратами являются прямоточные распиливающие абсорберы, в которых распыленная жидкость захватывается и уносится газовым потоком, движущимся с большой скоростью (20 – 30 м/сек и более), а затем отделяется от газа в сепарационной камере. К аппаратам такого типа относится абсорбер Вентури (рис. 11), основной частью которого является труба Вентури. Жидкость поступает в конфузор 1 трубы, течет в виде пленки и в горловине 2 распиливается газовым потоком. Далее жидкость выносится газом в диффузор 5, в котором постепенно снижается скорость газа, и кинетическая энергия газового потока переходит в энергию давления с минимальными потерями. Сепарация капель происходит в камере 4.

К распиливающим относятся также механические абсорберы, в которых разбрызгивание жидкости производится с помощью вращающихся устройств, т. е. с подводом внешней энергии для образования возможно большей поверхности контакта фаз между газом и жидкостью.

На рис.12 представлена схема роторного центробежного абсорбера с вертикальным вращающимся валом. В этом аппарате вращающиеся тарелки 1, укрепленные на валу, чередуются с неподвижными тарелками 2, которые крепятся к корпусу колонны. Тарелки 1 снабжены кольцевыми вертикальными ребрами 3, а тарелки 2 – коаксиальными ребрами. При таком устройстве между вращающимися и неподвижными тарелками образуются кольцевые каналы. Жидкость поступает в центральную часть колонны и под действием центробежной силы разбрызгивается кромкой вращающегося ребра. Капли пролетают пространство, заполненное газом и ударяются о стенку соответствующего ребра неподвижной тарелки. Таким образом при движении жидкости от центра к периферии тарелки происходит многократное контактирование фаз.