Смекни!
smekni.com

Расчет винтового насоса (стр. 3 из 8)

Гидроприводные винтовые насосы

В известных гидроприводных насосных установках нашли применение исключительно машины объемного типа с возвратно-поступательным движением рабочего органа (поршня). Практика применения гидропоршневых насосных агрегатов (ГПНА), выявила ряд их существенных преимуществ:

· отсутствие механической (посредством штанг) или электрической (посредством кабеля) связи источника энергии с погружным насосом;

· возможность эффективной эксплуатации скважин уменьшенного диаметра, а также наклонно направленных, эксплуатация которых другими механизированными способами затруднительна;

· возможность регулирования подачи погружного насоса;

· возможность обеспечения оптимального технологического режима эксплуатации, в частности плавный пуск скважин и поддержание заданной интенсивности отбора жидкости.

· возможность замены погружного агрегата без проведения трудоемких спускоподъемных операций, что позволяет кардинально упростить подземный ремонт скважин, сократить время простоя и уменьшить износ труб.

Новые перспективы создания гидроприводных насосных установок открылись в последние десятилетия, когда было освоено промышленное производство винтовых РО для забойных ВЗД и насосов.

Первое упоминание о возможности создания погружного гидроприводного винтового насосного агрегата (ГВНА) по схеме винтовой гидромотор-винтовой насос появилось в России в 1971 г. Позже была предложена схема уравновешанного агрегата и оптимальная геометрия РО насоса.

Схема размещения ГВНА в скважине аналогична той, которая используется при эксплуатации ГПНА.

В качестве гидромотора с незначительными конструктивными изменениями могут использоваться серийно выпускаемые ВЗД диаметром 85–108 мм. Частота вращения этих двигателей 100–300 об./мин. при расходе жидкости 4–10 л/с, перепад давления 6–8 МПа.

В качестве РО насосной части ГВНА целесообразно использовать многозаходные винтовые насосные пары как наиболее соответствующие по своей частоте вращения характеристикам ВЗД. При наружном диаметре таких насосных пар 60–89 мм и указанных выше частотах вращения можно достичь широкого диапазона подач пластовой жидкости 5–100 м3/сут. Особенности рабочего процесса многозаходных насосов позволяют при этом развивать давление 10–15 МПа при длине пары всего 1,5–2 м.

Наземное оборудование, как и в случае использования ГПНА, состоит из типового ассортимента: силовой плунжерный насос, система подготовки рабочей жидкости (отстойники, сепараторы, устройства для разделения эмульсий, подогреватели), оборудование устья скважины, регулирующая и регистрирующая аппаратура.

На начальном этапе создания ГВНА наиболее целесообразным представляется использование конструкций сбрасываемого исполнения со смешанным лифтом в двух простейших компоновках: без уравновешивания (рис. 9) и с частичным уравновешиванием осевых сил. Возможные типоразмеры таких ГВНА, которые могут быть реализованы на базе существующих в настоящее время отечественных многозаходных РО двигателей и насосов, представлены в таблице 1.

Весьма симптоматично, что в конце 90-х годов западные нефтемашиностроительные компании также начали разрабатывать гидроприводные винтовые насосные установки. Так, компания Weatherford опубликовала информацию о создании двух типоразмеров ГВНА с частотой вращения 200–1200 об./мин. и подачей до 80 м3/сут.

Таким образом, сегодня имеются серьезные основания практически рассмотреть вопрос о разработке и внедрении установок гидроприводных винтовых насосов, поскольку:

· накоплен опыт изготовления и эксплуатации основных узлов агрегата (многозаходных винтовых пар, шарниров, гибких валов, осевых опор, резьбовых соединений);

· увеличился удельный вес наклонно-направленных скважин, при эксплуатации которых использование традиционной техники механизированной добычи вызывает определенные проблемы;

· увеличился фонд скважин с трудноизвлекаемыми запасами, где предпочтительно применение насосов с регулируемой подачей.

Гидроприводные винтовые установки могут найти свое место в ряду технических средств для механизированной добычи нефти, так как они обладают рядом существенных технико-экономических преимуществ.

По сравнению с гидропоршневыми насосами:

· повышенной эксплуатационной надежностью и простотой конструкции (в связи с отсутствием клапанов и золотниковых распределителей);

· возможностью использования в качестве рабочей жидкости технической воды, что значительно упрощает систему подготовки жидкости;

· возможностью отборов пластовой жидкости высокой вязкости и повышенного газосодержания;

· отсутствием динамических нагрузок и гидравлических ударов, связанных с возвратно-поступательным движением рабочих органов.

По сравнению со штанговыми насосами:

· возможностью эксплуатации в скважинах со сложным профилем, включая наклонно-направленные с большой интенсивностью искривления;

· отсутствием необходимости в штангах;

· возможностью обеспечения оптимальных технологических режимов отбора путем регулирования подачи наземного силового насоса;

· простотой замены погружного агрегата и проведения ремонта скважины.

По сравнению с электропогружными насосами:

· отсутствием необходимости подвода электрического кабеля в скважину и применения системы гидрозащиты погружного электродвигателя;

· улучшенными пусковыми свойствами насосного агрегата.

Насос двухвинтовой погружной нефтяной (НДПН)

Накопленный опыт проектирования насос-компрессоров позволил также разработать техническую документацию и изготовить опытный образец погружного двухвинтового насоса типа НДПН, предназначенного для добычи нефти из малодебитных скважин (рис. 10).

Насос используется в составе установки для откачки пластовой жидкости из нефтяных скважин (рис. 11), которая состоит из погружного электродвигателя, компенсатора, протектора, предохраняющих электродвигатель от проникновения в него окружающей жидкости, насоса с компенсатором, обратного клапана, спускного клапана, насосно-компрессорных труб (НКТ), кабеля и трансформатора. В случаях, когда требуется обеспечить большой напор, насос может быть выполнен в виде нескольких, последовательно соединенных, модулей. В зависимости от вязкости продукции скважины модуль имеет различные исполнения проточной части, отличающиеся зазорами между винтами и корпусом насоса. Требуемые значения зазоров определяются в ходе выполнения расчета насоса. Расчетные энергетические характеристики для различных вариантов исполнения проточной части насоса (одного модуля) представлены на рис. 12.

Стендовые испытания опытного образца насоса типа НДПН, проведенные на Альметьевской центральной базе производственного обслуживания по прокату и ремонту электропогружных установок (АЦБПО ЭПУ) ОАО «Татнефть», подтвердили способность двухвинтового насоса обеспечить требуемую подачу при заданном перепаде давления.

Пути совершенствования ОВН

Анализ показывает, что в ближайшие годы совершенствование ОВН будет осуществляться за счет повышения качества материалов рабочих органов и совершенствования технологий их изготовления, оптимизации компоновки, геометрии и режимов эксплуатации РО.

Выбор материалов рабочих органов. Дальнейшее развитие и продвижение отечественных ОВН в нефтяной промышленности, несмотря на большое количество оригинальных разработок (как в плане общей компоновки гидромашины, так и в отношении геометрии РО), защищенных патентами, в немалой степени тормозится ограниченными возможностями конструкторов при выборе эластомеров обкладки статоров.

Используемые в течение многих десятилетий в отечественной практике синтетические нитрильные резины марок 2Д/405, 3825, 1226 и их производные не могут удовлетворять разнообразным условиям применения ОВН при перекачке углеводородов с различными физико-химическими свойствами.
Определенный прогресс в этом направлении связан с разработками фирмы РЕАМ, где проводятся НИОКР в области комбинированных методов модификации свойств эластомеров, в том числе создания т.н. «скользких» резин.

Западные компании придают выбору эластомеров первостепенное значение, образно называя эластомер статора «сердцем» насоса. Так, фирма РСМ/Kudu предлагает заказчику 5 модификаций резины твердостью от 52 до 76 единиц по Шору, каждая из которых специально предназначена для эксплуатации насоса в определенных условиях (фрикционный износ; воздействие сероводорода, углекислого газа, ароматических веществ). Термостойкость резин находится в пределах 120–160 °С.

Эффективным способом повышения надежности насосной пары является переход на конструкцию статора с постоянной толщиной эластичной обкладки, а также использование композитных материалов и пластмасс.

Технология изготовления РО. Немаловажное значение для совершенствования ОВН и улучшения их характеристик играют технологические факторы. Методики комплексного расчета зубонарезного инструмента и допусков на профили зубьев, учитывающие неравномерность усадки резины и хромового покрытия, позволяют повысить качество формообразования винтовых поверхностей РО за счет снижения погрешностей профиля и шероховатости поверхности зубьев ротора и сердечника статора, а также назначения оптимального натяга в зацеплении.

Оптимизация геометрии РО. При проектировании ОВН существует возможность выбора альтернативных вариантов РО, отличающихся своими геометрическими параметрами (контурным диаметром и безразмерными коэффициентами). Выбор оптимальной в заданных условиях эксплуатации формы плоской и пространственной геометрии РО является одной из основных задач, стоящих перед конструкторами и эксплуатационниками. Применительно к ОВН критериями оптимальности геометрии РО служат максимум давления, КПД или ресурса насоса.