Смекни!
smekni.com

Проектирование привода цепного транспортёра (расчет редуктора) (стр. 2 из 4)

Сравниваем предельные допускаемые напряжения и расчётные допускаемые напряжения:

4. Расчет червячной передачи

Значение коэффициента нагрузки:

Ориентировочное значение межосевого расстояния:

где Т2 – вращающий момент на валу червячного колеса, Нм.

Число зубьев червячного колеса:

Осевой модуль:

Предварительное значение коэффициента диаметра червяка:

Значение модуля и коэффициента диаметра согласуется по рекомендации ГОСТ 2144-76 (таблица 28 [2]) с целью уменьшения номенклатуры зуборезного инструмента. Принимаем m = 6,3 и q=14.

Уточняем межосевое расстояние:

Округляем его до ближайшего стандартного значения из ряда: …125;160;180…

Принимаем

Коэффициент смещения:

Начальный угол подъема червяка:

Размеры червяка.

Диаметр делительный:

Диаметр начальный:

Диаметр вершин витков:

Диаметр впадин витков:

Длина нарезной части:

Выбираем

мм.

Размеры червячного колеса.

Диаметр делительный окружности колеса:

Диаметр вершин зубьев:

Диаметр колеса наибольший:

Диаметр впадин зубьев:

Ширина венца колеса:

Проверочный расчёт передачи на прочность.

Окружная скорость на червяке:

Скорость скольжения в зацеплении:

Уточняем

:

где

- коэффициент, учитывающий интенсивность износа материала 1-ой группы

Расчетное напряжение на рабочих поверхностях зубьев не превышает допускаемого, следовательно, ранее установленные параметры передачи можно принять:

КПД передачи.

где

- предельный угол трения

Силы в зацеплении.

Окружная сила на колесе (осевая на червяке):

Окружная сила на червяке (осевая на колесе):

Радиальная сила:

Проверка зубьев колеса по напряжениям изгиба.

Эквивалентное число зубьев колеса:

Коэффициент формы зуба колеса выбираем по таблице 31 [2]:

Напряжения изгиба в зубьях червячного колеса.

Условие прочности выполняется, так как sF<[s]F, следовательно, m и q были нами выбраны верно.

Тепловой расчёт.

Мощность на червяке:

Температура рабочая:

где

- коэффициент, учитывающий отвод теплоты;

м2 - поверхность охлаждения корпуса;

- коэффициент теплоотдачи.

5. Определение диаметров валов

Диаметры различных участков валов редуктора определяют по формулам:

для быстроходного вала:

мм

Принимаем

=38 мм.

мм

Принимаем

=50 мм.

мм

Принимаем

=60 мм.

для тихоходного вала:

мм

Из конструкторских соображений принимаем

=56 мм.

мм

Принимаем

=65 мм.

мм

Принимаем

=75 мм.

Принимаем

=75 мм.

6. Выбор типа подшипников

Для вала-червяка быстроходной ступени принимаем роликоподшипники конические однорядные средней серии с параметрами:

мм - внутренний диаметр подшипника

=110 мм – наружный диаметр подшипника

=29 мм – ширина подшипника

=3 мм – радиус скругления подшипника

=96600 Н – динамическая грузоподъемность

=75900 Н – статическая грузоподъемность

Для тихоходного вала принимаем роликоподшипники конические однорядные средней серии с параметрами:

мм - внутренний диаметр подшипника

=140 мм – наружный диаметр подшипника

=33 мм – ширина подшипника

=3,5 мм – радиус скругления подшипника

=134000 Н – динамическая грузоподъемность

=111000 Н – статическая грузоподъемность

7. Расчет тихоходного вала

Силы, действующие в зацеплении:

окружная сила

Н,

радиальная сила

Н,

осевая сила

Н.

Определение сил, действующих вне редуктора: