Смекни!
smekni.com

Производственные технологии (стр. 3 из 3)

- отсутствие простоев, вызываемых загрузкой сырья и выгрузкой готовой продукции;

- возможность максимальной механизации и автоматизации процесса;

- создание благоприятных условий для использования вторичных энергоресурсов (например, тепла отходящих газов в металлургии);

- облегчение работы оборудования (отсутствие режимов его частого пуска);

- повышение качества выпускаемой продукции за счет обеспечения постоянства заданных технологических параметров (температура, давление);

- высокая производительность непрерывных технологических процессов.

Использование непрерывных технологических процессов нецеле-сообразно только при малых масштабах производства, при получении опытных партий.

Уровень технологии любого производства оказывает решающее влияние на его экономические показатели, поэтому выбор оптимального варианта технологического процесса должен осуществляться исходя из важнейших показателей его эффективности - трудоемкости и себестоимости.

Трудоёмкость, показатель, характеризующий затраты рабочего времени на производство определённой потребительной стоимости или на выполнение конкретной технологической операции; показатель трудоемкость является обратным показателю производительности труда, определяет эффективность использования одного из главных производственных ресурсов - рабочей силы. На величину трудоемкости влияет ряд факторов: технический уровень производства (фондо-вооружённость труда и энерговооружённость труда, полезные свойства предметов труда, технология), квалификация работников, организация и условия труда, сложность изготовляемой продукции и др.

В узком смысле под трудоемкостью понимаются средние затраты живого труда на единицу или на весь объём изготовленной продукции. Мера измерения трудоемкости - рабочее время.

Себестоимость - совокупность материальных и трудовых затрат предприятия в денежном выражении, необходимых для изготовления и реализации продукции. Такая себестоимость называется полной. Затраты предприятия, непосредственно связанные с производством продукции, называются фабрично-заводской себестоимостью. Соотношение между различными видами затрат, составляющих себестоимость, представляет собой структуру себестоимости.

Все затраты, необходимые для изготовления продукции, делятся на четыре основные группы:

1) затраты, связанные с приобретением исходного сырья, полуфабрикатов, вспомогательных материалов, топлива, воды, электроэнергии;

2) затраты на заработную плату всего числа работников;

3) затраты, связанные с амортизацией.

4) прочие денежные затраты (цеховые и общезаводские расходы на содержание и ремонт зданий, оборудования, технику безопасности, оплата за аренду помещений, оплата процентов банку и т.д.).

Соотношение затрат по различным статьям себестоимости зависит от вида технологического процесса. Например, в металлургии при производстве металлов главными затратами являются затраты на энергию (так, в производстве алюминия эти затраты составляют 50% себестоимости). В большинстве же химических процессов, особенно в производстве продуктов органического синтеза, полимеров и др., важнейшей статьей себестоимости служат затраты на сырье (около 70%)

Доля заработной платы в себестоимости продукции тем ниже, чем выше степень механизации и автоматизации труда, его производительность.

Анализ структуры себестоимости необходим для выявления резервов производства, интенсификации технологических процессов. Основными путями снижения себестоимости при сохранении высокого качества продукции являются: экономное использование сырья, материалов, топлива, энергии; применение высокопроизводительного оборудования; повышение уровня технологии.

3. При упругопластической деформации под действием внешней силы необратимо изменяются форма и размеры изготовленной из металла детали или испытуемого образца. Во время формации, которую обычно называют пластической, зерна металла под действием силы Р

Рис. 8. Схема пластической деформации отдельного зерна металла


расслаиваются на пачки скольжения. Образующиеся пачки смещаются друг относительно друга, что приводит к вытягиванию зерен в волокна (рис. 8).

В волокнистой структуре между волокнами располагаются различные разделяющие волокна включения, из-за которых пластически деформированный металл анизотропен. Его прочность на разрыв вдоль волокон оказывается выше, чем поперек.

Образованию и перемещению пачек скольжения в зернах предшествует лавинообразный процесс передвижения дислокаций по определенным плоскостям-системам скольжения в кристаллической решетке. Системы скольжения включают те параллельные плоскости, по которым могут передвигаться дислокации. Насчитывается до трех действующих систем. Наиболее легкие условия скольжения в первой, самые трудные - в третьей.

На рис.9 изображена принципиальная схема передвижения одной из многочисленных дислокаций к границе зерна под действием сдвигового напряжения τ. Экстраплоскость 1-1, содержащая дислокацию, под действием напряжения оттесняет противолежащую полуплоскость 2-2 в промежуточное положение и таким образом превращает ее в новую экстраплоскость. При этом полуплоскость 1,-1, становится продолжением бывшей экстраплоскости 1-1 (рис. 9, а, б).

Описанный процесс повторяется с экстраплоскостями и их дислокациями до тех пор, пока экстраплоскость 4-4 не выйдет за границу зерна, образуя при этом ступеньку величиной с параметр решетки (рис. 7. б, в, г).

При эстафетном передвижении экстраплоскости и дислокации каждый раз разрывается только одна связь между атомами, находящимися по разные стороны от плоскости сдвига S-S. Связи между остальными парами атомов, выходящими к данной плоскости сдвига, не разрываются. По мере выхода на границу зерна новых дислокаций образующаяся ступенька растет, превращаясь в зародыш сдвига. Описанное в сочетании с аналогичными процессами вдоль соседних плоскостей сдвига приводит к формированию в зернах и взаимному передвижению пачек скольжения. В течение процесса пластической деформации металла в кристаллической решетке его зерен под действием приложенного напряжения перемещаются не только "старые" дислокации, существовавшиев металле до начала деформации. Под действием этого напряжения, которое по мере развития пластической деформации возрастает, в решетке возникает огромное количество новых дислокаций, создаваемых источниками Франка-Рида. Новые дислокации, возникнув, включаются в работу механизма пластической деформации.

Рис. 9. Схема работы дислокационного механизма пластической деформации (эстафетное движение к границе зерна под действием напряжения τ)

Генерирование новых дислокаций в процессе пластической деформации источниками Франка-Рида происходит непрерывно. Поэтому количество дислокаций на границах зерен, возрастая, достигает критической величины. Вследствие этого на какой-то стадии развития пластической деформации в местах скопления дислокаций и сдвигов пачек скольжения на границах зерен возникают зародыши трещин. Зародыши, которые раньше других достигают критических размеров, превращаются в быстро распространяющиеся трещины, что и приводит металл к разрушению.

Знание дислокационной природы и особенностей механизма пластической деформации металла позволяет уяснить важный вопрос о причине более высокой прочности мелкозернистого металла по сравнению с крупнозернистым.

Вытягивание зерен в процессе деформации связано с выходом на их границы дислокаций, а также с перемещением пачек скольжения. Оно сопровождается поворотом самих расслаивающихся зерен под действием внешней силы. Однако этим элементарным процессам препятствуют границы соседних зерен. Чем мельче зерна, тем больше суммарная площадь их границ и тем больше сопротивление пластической деформации. Влияние размера зерна dна одну из характеристик прочности металла - предел текучести σT - отражено в формуле Холла-Петча:

где σM - прочность монокристалла; kyкоэффициент зернограничного упрочнения.

Размером зерна металла можно целенаправленно управлять путем изменения условий кристаллизации или применением термической обработки.