Смекни!
smekni.com

Разработка источников диффузионного легирования для производства кремниевых солнечных элементов (стр. 13 из 17)

№ образца Температура,°С Время диффузии, мин Li, мкм xji, мкм Среднее значение xj, мкм
8 950 80 335 1,058 1,06
335 1,058
335 1,058
340 1,09
335 1,058
9 980 20 260 0,638 0,62
250 0,590
260 0,638
255 0,613
255 0,613
10 40 305 0,878 0,90
310 0,907
310 0,907
315 0,936
310 0,907
11 60 350 1,156 1,16
355 1,189
350 1,156
350 1,156
350 1,156
12 80 390 1,435 1,45
390 1,435
395 1,472
395 1,472
390 1,435

Результаты, приведенные в таблице 3.3 можно представить на графике (рис. 3.3).

Рис. 3.3. Зависимость глубины залегания p – n перехода от времени проведения диффузии: 1 – Т = 920°С; 2 – Т = 950°С; 3 – Т = 980°С.

Следует заметить, что дифузию с использованием твердого планарного источника на основе нитрида бора необходимо проводить в окислительной среде, для чего необходима газовая система. Это объясняется тем, что в процессе испытаний данного источника (при диффузии в атмосфере воздуха) после диффузии на поверхности полупроводниковых пластин кремния можно было наблюдать темные пленки, которые не удаляются химической обработкой. Эти пленки аналогичны приведенным в пункте 3.1 для диффузии с использованием поверхностного источника на основе спиртового раствора борной кислоты.

3.4. Разработка и испытание источника на основе легированного окисла

Для устранения недостатков диффузии с применением простых неорганических соединений их смешивают с SiO2, используя метод совместного осаждения из тетраэтоксисилана (ТЭС) – Si(OC2H5)4.

Здесь будет рассмотрен метод диффузии из легированного окисла при использовании в качестве исходного легирующего соединения ортофосфорной кислоты.

Исследование этого метода диффузии показало, что исключительно важное значение имеет технология приготовления пленкообразующего раствора. В исходный раствор на основе смеси этилового спирта, ортофосфорной кислоты, воды и нескольких капель сильно разбавленной соляной кислоты добавляется ТЭС. Количества взятых C2H5OH, H3PO4, H2O и Si(OC2H5)4 были взяты в соотношении соответственно 4 : 10 : 5 : 1.

Данный раствор обладает пленкообразующей способностью и применение его следует после некоторого времени, которое называется временем созревания раствора. В нашем случае раствор наносился на полупроводниковую пластину кремния после 1 – 2 минут отстаивания. Опыт показал, что после приготовления раствора в нем происходят изменения, которые приводят к существенному увеличению вязкости раствора.

В качестве исходной пластины кремния была взята пластина p-типа (100) с удельным сопротивлением 10 Ом∙см. Раствор наносился на пластину методом центрифугирования при скорости вращения центрифуги 2750 об/мин.

Далее проводился процесс термодеструкции, в результате которого на пластине кремния должен образоваться слой фосфоросиликатного стекла. Для этого пластины кремния помещались в диффузионную печь при температуре 600 – 700°С и выдерживались в ней 1 – 2 мин.

Затем проводился диффузионный отжиг в атмосфере воздуха при температуре 950°С в течение 30 минут. После извлечения пластины кремния из печи ее необходимо обработать в водном растворе плавиковой кислоты. В результате химической обработки удаляется пленка фосфоросиликатного стекла, из которой шла диффузия фосфора в кремний.

Контроль параметров осуществлялся путем измерения глубины залегания p – n перехода методом сферического шлифа. В таблице 3.4 приведены результаты измерений.

Таблица 3.4.

Значение глубины залегания p – n перехода при диффузии из легированного окисла (Т = 950°С, t = 30 мин)

Li, мкм xji, мкм Среднее значение xj, мкм
305 0,877 0,84
295 0,821
290 0,793
300 0,849
305 0,877

Если сравнить значение глубины залегания от времени при использовании поверхностного источника на основе легированного окисла с источником на основе спиртового раствора ортофосфорной кислоты, то можно заметить, что при одинаковых температурах и временах проведения диффузии, глубина залегания p – n перехода при использовании легированного окисла значительно выше. Это может быть объяснено зависимостью коэффициента диффузии от поверхностной концентрации легирующей примеси. В результате применения легированного окисла возможно получать более высокие поверхностные концентрации примеси, чем при использовании источника на основе спиртового раствора ортофосфорной кислоты.

Применение этого источника даст возможность получать диффузионные слои с заданными глубинами переходов при сравнительно низких температурах и меньшем времени проведения процесса диффузии, что очень важно в технологии изготовления кремниевых солнечных элементов.


4.ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ РАЗРАБОТАННЫХ ИСТОЧНИКОВ ДИФФУЗАНТА ДЛЯ ИЗГОТОВЛЕНИЯ СТРУКТУР КРЕМНИЕВЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

Источники для диффузии бора и фосфора, разработанные в результате выполнения дипломного проекта могут быть применены в технологии изготовления кремниевых солнечных элементов. Так как были созданы источники как для диффузии бора, так и для диффузии фосфора, то это позволяет создавать кремниевые СЭ на основе исходных пластин кремния n- и p-типов. Кроме того данные источники можно применять для создания кремниевых солнечных элементов на основе кремния p-типа с текстурированной поверхностью.

4.1. Изготовление кремниевого СЭ на основе кремния p-типа

В качестве исходных пластин кремния были взяты пластины p-типа (100) с удельным сопротивлением 10 Ом∙см. Особенностью создания солнечного элемента на таких пластинах является возможность проведения процесса диффузии на пластинах с текстурированной поверхностью. Были созданы как n+-p, так и n+-p-p+ СЭ. В качестве поверхностного источника для диффузии фосфора использовался спиртовый раствор ортофосфорной кислоты, в качестве поверхностного источника для диффузии бора – спиртовый раствор борной кислоты. Технология диффузии из этих источников описана в 3 разделе.

При создании СЭ с тыльным подлегированием диффузия проводилась в один процесс. Необходимо заметить, что при таком способе создания диффузионной структуры на фронтальной поверхности пластины образуются затеки после нанесения диффузанта для тыльной стороны пластины кремния.

Режимы проведения процесса диффузии были выбраны таким образом, что глубина эмиттерного перехода в n+-p СЭ составила 1 мкм, а в n+-p-p+ - 0,5 мкм.

4.2. Создание омических контактов на структурах солнечных элементов электрохимическим осаждением никеля

Для создания токосъемных контактов к структуре кремниевого солнечного элемента использовался метод электрохимического осаждения никеля. Фронтальный контакт выполнялся в виде сетки, а тыльный контакт – сплошным слоем.

Для создания маски для последующего осаждения никеля использовался химически стойкий лак ХСЛ. До нанесения ХСЛ пластины кремния обезжиривались кипячением в изопропиловом спирте в течение 10 – 25 сек с последующей сушкой в парах изопропилового спирта.

Осаждение контактного слоя никеля на свободные от ХСЛ участки структуры осуществляли электрохимическим способом с использованием электролита следующего состава (в пересчете на 1 л дистилированной воды):

NiSO4×7H2O – 45,4 г/л;

Na2SO4×10H2O – 60 г/л;

Н3ВО4 – 30 г/л.

Схема установки для электрохимического осаждения никеля приведена на рис. 4.1.

Рис. 4.1. Схема установки для электрохимического осаждения никеля: 1 – ванна; 2 – электролит; 3 – пластина кремния; 4 – пластинка никеля; 5 – амперметр; 6 – электронагреватель; 7 – блок питания.

В качестве анода электролитической ванны использовалась никелевая фольга толщиной порядка 200 мкм. Катодом служила сама кремниевая структура. В качестве источника постоянного тока использовался блок питания Б5-47/1, работающий в режиме стабилизации тока. Осаждение производилось при плотности тока 2 - 5 мА/см2 и температуре электролита 35°С в течение 2 – 3 мин.

После нанесения слоя никеля структуры промывались в дистиллированной воде и производилось механическое удаление защитного слоя лака ХСЛ. Для удаления остатков лака применялось кипячение пластин в толуоле.

4.3. Измерение основных параметров на структурах солнечных элементов