Смекни!
smekni.com

Нарезание крепежной резьбы резцом (стр. 2 из 4)


3. Способы нарезания резьбы

При обработке крепежных резьб резанием используются различные способы:

нарезание резцом, гребенками, метчиками, плашками, самооткрывающимися винторезными головками, фрезерование, резьбопротягивание. Метчики, плашки, самооткрывающиеся винторезные головки, гребенчатые резьбовые фрезы, фрезерные головки, работающие при внешнем и внутреннем касании, резцовые резьбопротяжные головки, как правило, обрабатывают резьбу за один рабочий ход, а резьбовые резцы и гребенки – за несколько проходов. Наиболее распространено многопроходное нарезание резьбы резцом, которое по сравнению с другими способами имеет ряд преимуществ: высокая точность и низкая шероховатость обработанной резьбы; простоту и дешевизну конструкции инструмента; оснащенность его пластинками твердого сплава; высокая гибкость способа, позволяющая одним резцом нарезать резьбы одинакового шага на деталях различного диаметра.

Резьбу нарезают как вручную на универсальных токарных станках, так и по автоматическому циклу на резьботокарных полуавтоматах или универсальных токарных станках, оснащенных резьбонарезающим устройством.

Нарезание резьбы твердосплавными резцами является одним из самых высокопроизводительных способов, причем с ухудшением обрабатываемости материала нарезаемой детали его относительная производительность все более возрастает. В сочетании с достоинствами, отмеченными выше, это и привело к тому, что при обработке точных крепежных резьб этот способ получил наибольшее распространение.


4. Особенности процесса резания при нарезании резьбы резцом

4.1 Необходимые движения и размеры срезаемого слоя

Принципиальная кинематическая схема при нарезании резьбы резцом определяется сочетанием двух равномерных движений: вращательного движения детали и прямолинейного движения резца вдоль ее оси. Вращательное движение детали является движением резания, а окружная скорость этого движения – скоростью резания. Движение резца вдоль оси детали является вспомогательным движением формообразования, необходимым для получения винтовой поверхности резьбы.

Вспомогательное движение резца вдоль оси детали нельзя отождествлять с прямолинейным движением подачи проходного резца при продольном точении, которое является независимым по отношению к движению резания и скорость этого движения при постоянной скорости резания можно изменять по своему усмотрению. При нарезании резьбы резец за время одного оборота детали должен переместиться вдоль ее оси на расстояние, равное шагу резьбы.

Чтобы вырезать резьбовую впадину резец перед началом каждого прохода (рабочего хода) перемещают на определенное расстояние в направлении, перпендикулярном к оси детали. Это движение является движением подачи, а расстояние, на которое переместился резец, подачей, измеряемой в миллиметрах на двойной ход резца. Подача может быть как постоянной, так и изменяться от прохода к проходу резца.

Схема резания характеризует форму и размеры сечения срезаемого слоя для каждого прохода резца. При нарезании метрической резьбы используются два направления врезания резца: перпендикулярно к оси резца (радиальное врезание) и вдоль правой стороны профиля резьбы (боковое врезание). При радиальном врезании все три режущих кромки резца: вершинная и две боковые срезают слои материала детали. Поэтому все три кромки являются главными. При боковом врезании слои материала детали срезают только две кромки: вершинная и одна из боковых, которые являются главными. Вторая боковая режущая кромка, совпадающая со стороной профиля, вдоль которого осуществляется врезание, материал не срезает, а только формирует боковую поверхность резьбы, и поэтому является вспомогательной.

4.2 Особенности стружкообразования при радиальном врезании резца

Превращение срезаемого слоя в стружку при нарезании резьбы резцом проходит в крайне сложных условиях. Это связано с тем, что при радиальном врезании все три кромки резца участвуют в резании, срезая слои материала по всему рабочему периметру.

Встречные потоки деформируемого материала детали, перемещаясь по передней поверхности резца в направлениях, перпендикулярных к режущим кромкам, пересекаясь, мешают друг другу, увеличивая тем самым степень деформации срезаемого слоя.

Чем больше глубина врезания резца, тем условия стружкообразования становятся тяжелее, так как боковые поверхности резьбы все более ограничивают свободное формирование стружки. Поэтому превращение срезаемого слоя в стружку при нарезании резьбы резцом в деформационном аспекте можно отнести к наиболее тяжелому случаю резания с крайне стесненным стружкообразованием.

4.3 Тепловые явления при нарезании резьбы резцом

Источниками образования тепла при нарезании резьбы резцом является теплота деформации, образующаяся на условных плоскостях сдвига, соответствующих вершинной и боковой режущим кромкам резца, и теплота трения, образующаяся на контактных площадках передней и трех задних поверхностей. Теплообмен между резцом и деталью осуществляется через контактные площадки передней и задней поверхностей, где возникают тепловые потоки определенного направления и интенсивности.

Характер теплообмена между резцом и деталью изменяется при увеличении глубины врезания. Тепловые потоки, текущие через задние поверхности резца и примыкающие к ним поверхности резания, как правило, направлены от резца в деталь. Тепловые потоки, проходящие через стружку и контактные площадки передней поверхности, прилегающие к боковым кромкам, на первых проходах резца направлены из стружки в резец. При определенной глубине врезания, когда рабочая длина боковых режущих кромок становится намного больше толщины срезаемого слоя, тепловые потоки, текущие через переднюю поверхность, изменяют свое направление, и теплота начинает течь из резца в стружку. Это улучшает условия работы резца, так как часть теплоты, образующейся в районе вершинной режущей кромки, через боковые контактные площадки уходит в стружку и деталь.

Температуры на контактных площадках резца не одинаковы, и соотношение между ними также меняется при изменении глубины врезания.

При первых проходах резца место максимальной температуры находится в пересечении вершинной режущей кромки с боковыми; на последних проходах резца максимальная температура – в середине контактной площадки передней поверхности, примыкающей к вершинной режущей кромке. Температура резания, измеренная естественным образом термопарой, несколько ниже максимальных температур, устанавливающихся в характерных точках контактных площадок.

Температура резания, измеренная естественным образом термопарой, на последнем проходе резца увеличивается при увеличении подачи и скорости резания. Несмотря на то, что подача при нарезании резьбы по сравнению с точением меньше, температуры резания достигают относительно большого значения, что связано со значительно большей суммарной шириной срезаемого слоя и меньшей массой режущей части резьбового резца.

4.4 Влияние направления врезания резца на показатели процесса резания

Направление врезания резца не влияет на толщину слоя, срезаемого вершинной режущей кромкой, и общую площадь сечения срезаемого слоя. Однако направление врезания изменяет как общую форму слоя, так и площади слоев, срезаемых боковыми кромками. Изменение направления врезания с радиального на боковое превращает коробчатую форму сечения срезаемого слоя в угловую. При этом толщина слоя, срезаемого одной из боковых режущих кромок, при нарезании метрической резьбы увеличивается в два раза. При нарезании упорной резьбы врезание резца по биссектрисе угла профиля уравнивает толщины слоев, срезаемых обеими боковыми кромками, приближая форму сечения срезаемого слоя к той, которая соответствует нарезанию метрической резьбы с радиальным врезанием. Изменение общей формы сечения срезаемого слоя и соотношения между шириной и толщиной слоев, срезаемых боковыми режущими кромками, сказывается на деформационных и тепловых показателях процесса нарезания резьбы.

Боковое врезание несколько уменьшает коэффициент усадки стружки. Это связано с улучшением условий стружкообразования, так как встречный поток стружки от одной из боковых режущих кромок резца при боковом врезании отсутствует. Имеет значение и то, что толщина слоя, срезаемого боковой режущей кромкой резца при боковом врезании, в два раза больше, чем при радиальном. Известно, что с увеличением толщины срезаемого слоя степень его деформации уменьшается. Отличие коэффициентов усадки стружки при радиальном и боковом врезании заметнее при невысоких скоростях резания, когда стружкообразование протекает в более тяжелых условиях. Увеличение скорости резания облегчает процесс образования стружки и разность значений коэффициента усадки стружки при боковом и радиальном врезании уменьшается.

Уменьшение степени деформации при боковом врезании по сравнению с радиальным приводит к уменьшению силы резания и ее главной составляющей также как и коэффициента усадки стружки. Боковое врезание влияет на главную составляющую силы резания тем слабее, чем выше скорость резания.

Боковое врезание уменьшает работу резания и, как следствие, количество выделяемого тепла, однако при этом ухудшаются условия теплоотвода в стружку и деталь на боковой режущей кромке, не участвующей в резании. Поэтому при боковом врезании температура резания не намного ниже, чем при радиальном. Боковое врезание увеличивает период стойкости резца.