Смекни!
smekni.com

Автоматизування змішувальної установки на основі одноконтурних систем регулювання (стр. 2 из 5)

2.2 Другий етап проектування – вибір пристроїв незмінної та змінної частин системи

До незмінної частини прийнято відносити виконавчі механізми і регулюючі органи, підсилювачі потужності, проміжні перетворювачі та вимірювальні засоби. Їх вибирають не тільки з урахуванням вимог до точності та якості регулювання, але, в основному, за надійністю дії, вартістю, стійкістю до впливу агресивного середовища, вибухобезпечності тощо. До змінної частини системи відносять регулятори, мікропроцесорні пристрої, компенсатори, а також пристрої корекції динамічних характеристик.

На другому етапі проектувальник складає математичні моделі пристроїв керування, які входять до незмінної частини системи. Це забезпечує основу для побудови структури всієї АСК. Якщо повністю ви

значена структура АСК, то подальше проектування зводиться до вирішення задачі аналізу, в іншому випадку – до вирішення задачі синтезу.

2.3 Третій етап проектування – вирішення задачі аналізу чи синтезу

Якщо ставиться задача аналізу АСК, то при цьому процес проектування зводиться до розрахунково-теоретичної роботи. Проектувальник повинен знайти математичні моделі замкнених і розімкнених систем регулювання. При цьому широко використовуються методи структурних перетворень, котрі дозволяють багатоконтурні системи представити у вигляді одноконтурних.

Прийнятий порядок аналізу АСК полягає в послідовному виконанні наступних дій: визначення еквівалентних передавальних функцій об'єкта керування, дослідження стійкості, якості й точності регулювання. Досліджувати якість неперервних і дискретних лінійних систем можно, аналізуючи розташування нулів і полюсів передавальної функції замкненої системи, а також за кореневим годографом, інтегральними оцінками, дійсної та уявної частотних характеристик замкненої системи або за кривими перехідних процесів.

Проблема підвищення динамічної точності є основною, так як без її вирішення неможливо забезпечити виконання покладених на систему задач (системи стабілізації не зможуть підтримувати режими регулювання з заданою точністю, системи програмного керування можуть вивести об'єкт на недопустимі робочі режими тощо).

На характеристики точності значний вплив чинять не тільки сигнали керування та збурення, але й перешкоди, які поступають ззовні або які створюються всередині системи. Тому при аналізі АСК враховують два типи похибок: регулярні та випадкові. Для зменшення регулярних похибок необхідно збільшувати коефіцієнти підсилення пристроїв керування. Але при цьому слід пам'ятати, що одночасно збільшується небажаний вплив нелінійностей на поведінку системи. З ростом коефіцієнта підсилення збільшується смуга пропускання системи, що приводить до зростання похибки від дії шумів.

Шляхом підбору додаткових корегуючих пристроїв можна підвищити порядок астатизму системи регулювання. Але підвищувати астатизм системи вище 3-го порядку недоцільно, так як це приводить до значного збільшення впливу перешкод на точність системи.

2.4 Задачі синтезу

Задачі синтезу АСК зводяться до вибору типу та параметрів послідовних, паралельних і послідовно-паралельних корегуючих пристроїв, які забезпечують найбільш точне відтворення регулярних сигналів керування. Розрізняють структурний і параметричний синтез АСК. Постановка задачі структурного синтезу зводиться до того, що необхідно визначити тип корегуючого пристрою, який забезпечує мінімальну середньоквадратичну похибку перешкоди при заданій динамічній похибці й часу протікання перехідного процесу. У результаті вирішення задачі синтезу в обох випадках у систему вводяться лінійні корегуючі пристрої. Вони реалізуються у вигляді RC-фільтрів або робочих програм для мікропроцесорних контролерів. Постановка задачі параметричного синтезу зводиться до того, що необхідно визначити параметри регуляторів і корегуючих пристроїв, які забезпечують задані показники якості системи регулювання.

Якщо результати моделювання АСК відповідають технічним умовам, то на цьому процес проектування закінчується і розробляється ескізний проект системи регулювання.


3.РОЗРОБКА АСК НЕПЕРЕРВНИМИ ТЕХНОЛОГІЧНИМИ ПРОЦЕСАМИ

Автоматизування змішувальної установки на основі одноконтурних систем регулювання

3.1 Принцип роботи змішувальної установки

Змішувальна установка (рис. 2) призначена для неперервного змішування двох електропровідних рідин з різними концентраціями (процес запуску змішувальної установки не розглядається).

Принцип роботи змішувальної установки полягає в наступному. При постійному перемішуванні рідини в установку через регулюючі клапани 1 і 2 постійно завантажуються дві рідини з витратами:

(концентрація
, густина
) і
(концентрація
, густина
), а через регулюючий клапан 3 рідина виводиться з устаноки. Рівень рідини в установці повинен дорівнювати
. Для проводення процесу в автоматичному режимі неохідно стабілізувати рівень рідини в установці та її концентрацію, а також вести автоматичний контроль за наступними технологічними параметрами: витратами потоків
і
, рівнем рідини
та концентрацією
цільового компоненту на виході з установки. Приймаємо, що процес перемішування відноситься до процесу ідеального перемішування. Зміною температури в установці знехтуємо. Блокування виконується за перевищенням рівня
в установці шляхом перекриття потоків
і
.

Рис. 2. Схема змішувальної установки.

На рис. 2 показано: 1,2, 3 – клапани; 4 – перемішувач; 5 – переливний патрубок; 6 – привід перемішувача; 7 – датчик аварійної зупинки установки.

3.2 Розрахунок невідомих значень технологічних параметрів

Розраховуємо масові витрати матеріальних потоків:

;

;

.

Розрахуємо номінальне значення концентрації на виході з установки за формулою:


.

3.3 Аналіз технологічного процесу змішування як об'єкта керування

Для нормальної роботи змішувальної установки в неперервному режимі роботи необхідно стабілізувати два технологічних параметри: рівень

рідини в установці та концентрацію
на її виході.

Рівень в установці доцільно стабілізувати за рахунок зміни витрати

рідини на її виході. Для стабілізації концентрації
на виході установки використаємо витрату
, враховуючи, що концентрація
. Збурюючими технологічними параметрами будуть: витрата матеріального потоку
і концентрації
та
. Так як витрата
є змінною координатою, яка не використовується для регулювання, то її необхідно стабілізувати. Структурно-логічна схема змішувальної установки показана на рис. 3.