Смекни!
smekni.com

Вакуумное напыление (стр. 7 из 9)

Основные параметры, достижимые в установках ВЧ-распыления материалов:

- удельная скорость распыления - 2·10-7 - 2·10-6 г/(см2·с);

- эффективность процесса распыления (по меди) - 6·10-7 г/Дж;

- энергия генерируемых частиц – 10-200 эВ;

- скорость осаждения – 0,3-3,0 нм/с;

- энергия осаждаемых частиц – 0,2-20 эВ;

- рабочее давление в камере установки – 0,5-2,0 Па.

2.4 Плазмоионное распыление в несамостоятельном газовом разряде

В распылительных системах данного типа горение газового разряда поддерживается дополнительным источником (магнитное поле, ВЧ-поле, термокатод). На рис.7 представлена трехэлектродная распылительная система, в которой в качестве дополнительного источника электронов используется термокатод.


Термокатод (1) испускает электроны в сторону анода (3). Этот поток ионизирует остаточный газ, поддерживая горение разряда. На распыленную мишень (2) подается высокий отрицательный потенциал, в результате чего положительные ионы плазмы (4) вытягиваются на мишень и бомбардируют ее поверхность, вызывая распыление материала мишени. Положки (5) располагаются напротив мишени и на них осаждается распыленный материал.

Использование несамостоятельного газового разряда позволяет осуществлять нанесение покрытий при низком рабочем давлении в камере установки (5·10-2 Па), что обеспечивает снижение концентрации газов, захваченных пленкой, а также увеличение средней энергии осаждаемых частиц вследствие уменьшения числа столкновений распыленных частиц с молекулами газа на пути к подложке.

Скорость распыления в рассмотренной 3-электродной системе регулируется силой тока эмиссии термокатода, давлением в камере установки и напряжением на мишени и может изменяться в широких пределах (1-1000 А/мин).

Таким образом, к преимуществам систем триодного распыления по сравнению со стандартными диодными распылительными системами следует отнести: более высокие скорости осаждения; уменьшения пористости и повышение чистоты осаждаемых пленок; повышение адгезии пленок к подложкам.


3. Технология тонких пленок на ориентирующих подложках

Классическим методом получения чистых поверхностей многих материалов является испарение и конденсация в сверхвысоком вакууме. Тонкие пленки металлов или элементарных полупроводников, получаемые вакуумным испарением обычно поликристаллические или аморфные, т.е. в них невозможна определенная кристаллографическая ориентация поверхности.

Технология многослойных структур должна обеспечивать высокое качество роста материалов слоистых структур и совершенство границ раздела между этими материалами. Только в этом случае могут быть реализованы те потенциальные возможности, заложенные в полупроводниковых сверхрешетках и многослойных магнитных структурах.

Для получения тонких высококачественных пленок и многослойных структур используют чаще всего механизмы эпитаксиального роста материала пленки на соответствующей монокристаллической подложке. Наибольшее распространение получил метод молекулярно-лучевой эпитаксии (МЛЭ), позволяющий формировать совершенные монокристаллические слои различных материалов в условиях сверхвысокого вакуума. Этот метод успешно применяется для выращивания тонких пленок полупроводников, металлов, диэлектриков, магнитных материалов, высокотемпературных сверхпроводников и многих других веществ. К настоящему времени накоплен достаточно большой объем как теоретических исследований, так и практических работ в этой области, поэтому технология МЛЭ является самым распространенным методом получения полупроводниковых сверхрешеток и многослойных магнитных структур.

В последние годы все большее распространение для выращивания полупроводниковых сверхрешеток приобретает технология роста из газовой фазы с использованием металлоорганических соединений (РГФ МОС). В этом методе также используется процесс эпитаксиального роста материалов на нагретой подложке при термическом разложении металлорганических соединений. Механизмы роста в методе РГФ МОС изучены не так глубоко, как в МЛЭ, однако этим методом успешно выращивают большинство полупроводниковых соединений AIIIBV, AIIBIV и AIVBVI.

Из методов эпитаксиального роста для получения полупроводниковых сверхрешеток может быть использована и жидкофазная эпитаксия, в которой монокристаллические слои получают из контактирующих с подложкой пересыщенных растворов. С понижением температуры избыточное количество полупроводника осаждается из раствора на подложку, что связано с уменьшением растворимости полупроводникового материала. Наилучшие результаты дает жидкофазная эпитаксия для полупроводниковых соединений типа AIIIBV и их твердых растворов. Многослойные полупроводниковые структуры получают в многокамерных реакторах для жидкофазной эпитаксии путем последовательным созданием контакта с разными расплавами.

Тонкие магнитные пленки и многослойные магнитные структуры могут быть получены различными методами напыления, включая высокочастотное и магнетронное распыление. Эти методы позволяют получать слои практически любого состава. Некоторые исследователи считают, что наилучшие возможности для технологии многослойных магнитных структур дают различные методы электролитического осаждения.

3.1 Механизмы эпитаксиального роста тонких пленок

Вопросы, связанные с механизмами роста, становятся чрезвычайно важными при создании гетероструктур и многослойных структур, от которых требуется высшая степень однородности состава при толщине менее 100 Å.

Наиболее важные индивидуальные атомные процессы, сопровождающие эпитаксиальный рост следующие:

- адсорбция составляющих атомов или молекул на поверхности подложки;

- поверхностная миграция атомов и диссоциация адсорбированных молекул;

- присоединение атомов к кристаллической решетке подложки или эпитаксиальным слоям, выращенным ранее;

- термическая десорбция атомов или молекул, не внедренных в кристаллическую решетку.

Конденсация на подложку нового материала из газовой фазы определяется скоростью столкновения атомов или молекул с подложкой (число частиц, поступающих за единицу времени на единицу площади)

(3.1)

где p – давление паров, М – молекулярный вес частиц, k – постоянная Больцмана и Т – температура источника.

Частица, конденсированная из газовой фазы, может сразу же покинуть поверхность подложки или диффундировать по поверхности. Процесс поверхностной диффузии может привести к адсорбции частицы на поверхности подложки или растущей пленки или к процессу поверхностной агрегации, сопровождающимся образованием на поверхности зародышей новой кристаллической фазы конденсируемого материала. Адсорбция отдельных атомов, как правило, происходит на ступеньках роста или других дефектах. Атомный процесс взаимодиффузии, при котором атомы пленки и подложки обмениваются местами, играют важную роль в процессе эпитаксиального роста. В результате этого процесса граница между подложкой и растущей пленкой становится более гладкой.

Процессы на поверхности, сопровождающие эпитаксиальный рост при МЛЭ могут быть описаны количественно. Каждый из индивидуальных атомных процессов, рассмотренных выше, характеризуется собственной энергией активации и может быть в первом приближении представлен экспоненциальным законом. Скорость десорбции, например

(3.2)

где Ed – энергия активации процесса десорбции, Ts– температура подложки.

На феноменологическом уровне различают три основные типа роста тонких эпитаксиальных пленок:

1. Послойныйрост (layer-by-layer growth). При этом механизме роста каждый последующий слой пленки начинает формироваться только после полного завершения роста предыдущего слоя. Этот механизм роста называют также ростом Франка-ван дер Мерве (Frank-van der Merve, FM). Послойный рост имеет место, когда взаимодействие между подложкой и слоем атомов значительно больше, чем между ближайшими атомами в слое. Схематическое представление послойного роста пленки для различной степени покрытия  (в долях монослоев ML) показано на рис. 8,а.

2. Островковый рост или рост Вольмера-Вебера (island growth, Vollmer Weber, VW). Этот механизм является полной противоположностью послойному росту. Условием его реализации является преобладание взаимодействия между ближайшими атомами над взаимодействием этих атомов с подложкой. При островковом механизме роста вещество с самого начала оседает на поверхности в виде многослойных конгломератов атомов (см. рис.8,б).

3. Промежуточным между этими двумя механизмами является рост Странски-Крастанова (Stransky-Krastanov, SK, layer-plus-islandgrows), при котором первый слой полностью покрывает поверхность подложки, а на нем происходит рост трехмерных островков пленки. К этому механизму могут приводить многие факторы, в частности достаточно большое несоответствие между параметрами кристаллических решеток пленки и подложки (см. рис.8,в).

Условие, разграничивающее реализацию того или иного механизма роста, можно получить из анализа соотношений между коэффициентами поверхностного натяжения между подложкой и вакуумом S, между пленкой и вакуумом Fи между подложкой и пленкой S/F (рис.9).

Коэффициент поверхностного натяжения поверхности равен свободной энергии единицы поверхности. Соответственно эти коэффициенты определяют силы поверхностного натяжения, действующие на единицу элемента длины границы раздела. Согласно этому определению сила dF, действующая на бесконечно малый элемент dl границы раздела двух сред равна