Смекни!
smekni.com

Тепловые насосы (стр. 2 из 2)

Режим работы теплонаносной машины определяется режимом работы отопительной системы. При повышении наружных температур отопительного сезона работает только компрессор нижней ступени КМ1. При этом весь поток рабочего тела после компрессора КМ1 поступает в конденсатор К1, где нагревает теплоноситель до температуры t1. Теплонаносная машина регулируется с помощью регулятора температуры, воздействующего на дроссельный вентиль Д1.

При более низких температурах наружного воздуха включается в работу компрессор КМ2 и конденсатор К2 второй ступени. Регулирование работы установки в диапазоне температур от tпр до температуры t1 осуществляется с помощью регулятора температуры, воздействующего на дроссельный вентиль Д2. Иногда верхняя ступень теплового насоса заменяется электрическим нагревателем, что снижает начальные затраты, но приводит к увеличению расхода электроэнергии.

Для круглогодичного кондиционирования в южных районах (отопление зимой, кондиционирование воздуха летом) распространение получают мелкие теплонаносные автоматизированные агрегаты (кондиционеры с тепловым насосом) для обслуживания небольших одноквартирных домов и отдельных комнат. Эти установки очень компактны и используют наружный воздух в качестве источника низкой температуры. Реверсирование установки, то есть переход с холодильного режима на теплонаносный осуществляется изменением направления потока рабочего тела. В мелких установках, где в качестве дросселирующего органа служит капиллярная трубка, изменение потока жидкого рабочего тела не вносит каких-либо затруднений в эксплуатацию.

тепловой насос термодинамическая температура

Поршневые компрессоры

Поршневые компрессоры относятся к разряду компрессоры объемного действия, в которых процесс сжатия и перемещения паров хладагента происходит в замкнутом пространстве цилиндра с помощью поршня. Поршневые компрессоры применяются в паровых холодильных машинах. По области применения различают стационарные и транспортные насосы. Кроме того, поршневые насосы подразделяют:

1. По сжимаемым в них хладагентам:

- аммиачные;

- фреоновые (хладоновые);

- универсальные;

2. По величине холодопроизводительности:

- малые (до 14 кВт);

- средние (14…105 кВт);

- крупные (свыше 105 кВт);

3. По числу ступеней сжатия:

- одноступенчатые;

- многоступенчатые (число ступеней обычно не превышает семи);

4. По числу цилиндров:

- одноцилиндровые;

- двухцилиндровые;

- многоцилиндровые (до 16 цилиндров);

5. В зависимости от кинематической схемы и расположения цилиндров в плоскости:

- горизонтальные;

- вертикальные;

- угловые;

- V-образные;

- W-образные;

- VV-образные;

- крестообразные;

- звездообразные;

6. По направлению движения хладагента в цилиндре:

- прямоточные (хладагент проходит по цилиндру только в одном направлении);

- непрямоточные (хладагент меняет направление движения, следуя за поршнем);

7. По типу привода:

- с электродвигателем;

- с двигателем внутреннего сгорания;

8. По конструкции уплотнения картера:

- сальниковые;

- бессальниковые;

- герметичные и др.

В настоящее время наиболее распространенными являются аммиачные и фреоновые (хладоновые), одноступенчатые, сальниковые и бессальниковые поршневые компрессоры простого действия, вертикальные и V-образные, прямоточные и непрямоточные.

Поршневой компрессор (рис.4.) состоит из цилиндрического корпуса 1, внутри которого перемещается поршень 2 с кольцами, всасывающего и нагнетательного клапанов. Поршень в корпусе совершает возвратно-поступательное движение. Преобразование вращательного движения привода в возвратно-поступательное движение поршня осуществляется с помощью кривошипно-шатунного механизма. При движении поршня вправо открывается клапан 3, и жидкость заполняет пространство внутри корпуса. При этом клапан 4 закрыт. При движении поршня влево клапан 3 закрыт, открывается клапан 4, и жидкость выталкивается в нагнетательный трубопровод.

Рис.4. Схема поршневого насоса.

1 - корпус; 2 - поршень; 3 - всасывающий клапан; 4 - нагнетательный клапан.

Поршневые компрессоры имеют следующие достоинства:

- высокий КПД (до 95 %);

- возможность получения высоких давлений;

- независимость подачи от противодавления сети;

- возможность запуска в работу без предварительного залива (при использовании в качестве насосов).

К недостаткам относится:

- громоздкость конструкции;

- невозможность использования для привода высокоскоростных электродвигателей из-за сложности привода через кривошипно-шатунный механизм;

- сложность регулирования подачи.

Для поршневых компрессоров предназначенных для транспортных машин большинство деталей изготавливаются из легких материалов и сплавов. Компрессоры автомобильных и железно-дорожных холодильных машин строятся с воздушным охлаждением и поэтому имеют высокую степень оребренности. Не только цилиндры и крышки цилиндров, но и картер имеет ребра.

Работа компрессоров транспортных машин в условиях тряски и вибрации, а также сложность, в ряде случаев и невозможность выполнения ремонта в дорожных условиях вызывают необходимость в значительном увеличении прочности деталей, особенно корпусных, и в повышении общей надежности компрессоров.

Компрессоры используются практически во всех отраслях народного хозяйства. Сжатый воздух как энергоноситель применяется в различных пневматических устройствах на машиностроительных и металлообрабатывающих заводах, в горно-добывающей и нефтяной промышленности, при производстве строительных и ремонтных работ. Компрессоры необходимы в газовой промышленности при добыче, транспортировке и использовании природных и искусственных газов.

В химической промышленности газовые многоступенчатые компрессоры используются в циклах синтеза химических продуктов при высоком давлении. В последнее время сжатый воздух, получаемый от поршневых компрессоров, находит применение в текстильной промышленности как энергоноситель для проведения ткацкого процесса.

В установках умеренного и глубокого холода, а также в газотурбинных установках компрессоры являются органической частью, в значительной степени, определяющей экономичность агрегатов.