Смекни!
smekni.com

Плазменная обработка. Плазмотрон (стр. 2 из 2)

Рис. 2. Схемы высокочастотных плазматронов: а — индукционный; б ёмкостный; в — факельный; г — сверхвысокочастотный; 1 — источник электропитания; 2 — разряд; 3 — плазменная струя; 4 — индуктор; 5 — разрядная камера; 6 — электрод; 7 — волновод

Для пуска плазматрона, т. е. возбуждения в нём разряда, применяют: замыкание электродов, поджиг вспомогательного дугового разряда, высоковольтный пробой межэлектродного промежутка, инжекцию в разрядную камеру плазмы и др. способы. Основные тенденции развития плазматронов: разработка специализированных плазматронов и плазменных реакторов для металлургической, химической промышленностей, повышение мощности в одном агрегате до 1 — 10 МВт, увеличение ресурса работы и т.д.

Плазменная горелка, ручной дуговой плазматрон для нанесения покрытий, резки, сварки, наплавки и др. процессов плазменной обработки. По принципу действия различают две группы плазменных горелок: для работы плазменной дугой и для работы плазменной струёй. При механизированной обработке плазменная горелка закрепляется на специальной установке; для нанесения покрытий и наплавки она обычно оснащается устройством для подачи распыляемого или наплавляемого материала (в виде порошка или проволоки). Такая плазменная горелка называется плазменной головкой. Мощность плазменной горелки достигает 100 кВт, плазмообразующими газами служат Ar, Не, N2, NH4, воздух и их смеси. Для зажигания дугового разряда в начале работы необходимо замкнуть зазор между катодом и анодом плазменной горелки (плазменная струя) или между катодом и обрабатываемым металлом (плазменная дуга) или иным образом возбудить разряд.

плазмотрон горелка плазменная обработка