Смекни!
smekni.com

Автоматизация технологических процессов колпаковой печи (стр. 3 из 5)

3. На верхнем уровне находится рабочая станция управления ходом продувки. Верхний уровень осуществляет следующие функции: контроль и сигнализация значений параметров, ручной ввод данных, учет производства и составление данных за смену, оптимизация отдельных техпроцессов, оценка работы смены, расчет технико-экономических показателей, контроль выполнения плановых заданий.

4. Функциональная схема системы автоматизации, выбор технических средств контроля и управления АСУТП

Функциональная схема автоматизации представлена графической части проекта (лист 2).

Функциональная схема автоматизации содержит следующие контуры контроля и регулирования:

- контур контроля и регулирования температуры под колпаком печи;

- контур контроля и регулирования соотношения топливо-воздух;

- контур контроля и сигнализации давления под колпаком печи;

- контур контроля температуры среды под муфелем;

- контур контроля расхода дымовых газов;

- контур контроля температуры отходящих дымовых газов.

- контур контроля и регулирования расхода защитных газов.

Выбор технологических средств контуров контроля и регулирования был обусловлен пределами измерения технологических параметров и условиями эксплуатации.

1. Контур контроля и регулирования температуры под колпаком печи.

Сигнал с термопары поз.1-1 тип ТХА-0192 через преобразователь поз.1-2 тип МТМ 402-01, который служит показывающим прибором, поступает на вход аналоговых сигналов В1 микроконтроллера. С задатчика БРУ-7 (поз. 1-3) в контроллер на дискретный вход B3 поступает информация о том, будет ли температура задаваться при помощи задатчика вручную, либо задание будет осуществляться с рабочей станции на основании расчета. Если температура задается вручную, в контроллер, кроме этого, на вход В2 заводится сигнал с задатчика БРУ-7 (поз. 1-3).

Контроллер на основании полученных данных определяет сигнал ошибки между текущим и заданным значением температуры под колпаком, и по этой ошибке, по встроенному ПИД-алгоритму рассчитывает управляющее воздействие, которое в виде токового сигнала 4-20 мА с выхода В/ВО2 поступает на регулирующий клапан в комплекте с цифровым регулирующим контроллером DVC6010 (поз. 1-4). По этой же линии клапан и контроллер обмениваются информацией по HART-протоколу. Положение клапана, полученное по HART-протоколу на вход В/ВО2, показывается на индикаторе БРУ-7 (поз. 1-3).

2. Контур контроля и регулирования соотношения топливо-воздух.

Сигнал с датчика расхода топлива Метран-100 ДД, поз 2-1 поступает на вход преобразователя токового сигнала МТМ 310С, поз 2-2, который так же является показывающим прибором на щите КИПиА, после чего поступает на вход В4 микроконтроллера. Аналогично на вход контроллера В5 через преобразователь МТМ 310С поз 3-2, поступает сигнал с датчика расхода воздуха Метран 100ДД, поз 3-1. С задатчика БРУ-7 (поз. 3-3) в контроллер на дискретный вход B7 поступает информация о том, будет ли соотношение задаваться при помощи задатчика вручную, либо задание будет осуществляться с рабочей станции на основании расчета. Если соотношение задается вручную, в контроллер, кроме этого, на вход В6 заводится сигнал с задатчика БРУ-7 (поз. 3-3).

Контроллер на основании полученных данных определяет сигнал ошибки между текущим и заданным значением, и по этой ошибке, по встроенному ПИД-алгоритму рассчитывает управляющее воздействие, которое в виде токового сигнала 4-20 мА с выхода В/ВО4 поступает на регулирующий клапан в комплекте с цифровым регулирующим контроллером DVC6010 (поз. 3-4). По этой же линии клапан и контроллер обмениваются информацией по HART-протоколу. Положение клапана, полученное по HART-протоколу на вход В/ВО4, показывается на индикаторе БРУ-7 (поз. 3-3).

3. Контур контроля и сигнализации давления под колпаком печи;

Сигнал с датчика расхода топлива Метран-100 ДИ, поз 4-1 поступает на вход преобразователя токового сигнала МТМ 310С, поз 4-2, который так же является показывающим прибором на щите КИПиА, после чего поступает на вход В8 микроконтроллера. В контроллере осущесвляется анализ полученного значения и при достижении им критической величины, срабатывает световая сигнализация. Сигнал поступает на лампу HL1 с выхода ВО5 микроконтроллера.

4. Контур контроля температуры среды под муфелем;

Сигнал с термопары поз.5-1 тип ТХА-0192 через преобразователь поз. 5-2 тип МТМ 402-01, который служит показывающим прибором, поступает на вход аналоговых сигналов В9 микроконтроллера.

5. Контур контроля расхода дымовых газов

Сигнал с датчика расхода поз 6-1 тип Метран100 ДД через преобразователь поз. 6-2 тип МТМ 310С, который служит показывающим прибором, поступает на вход аналоговых сигналов В10 микроконтроллера.

6. Контур контроля температуры отходящих дымовых газов

Сигнал с термопары поз.7-1 тип ТХА-0192 через преобразователь поз. 7-2 тип МТМ 402-01, который служит показывающим прибором, поступает на вход аналоговых сигналов В11 микроконтроллера.

7. Контур контроля и регулирования расхода защитных газов.

Сигнал с датчика расхода топлива Метран-100 ДД, поз 8-1 поступает на вход преобразователя токового сигнала МТМ 310С, поз 8-2, который так же является показывающим прибором на щите КИПиА, после чего поступает на вход В4 микроконтроллера. С задатчика БРУ-7 (поз. 8-3) в контроллер на дискретный вход B14 поступает информация о том, будет ли расход газов задаваться при помощи задатчика вручную, либо задание будет осуществляться с рабочей станции на основании расчета. Если соотношение задается вручную, в контроллер, кроме этого, на вход В13 заводится сигнал с задатчика БРУ-7 (поз. 8-3).

Контроллер на основании полученных данных определяет сигнал ошибки между текущим и заданным значением, и по этой ошибке, по встроенному ПИД-алгоритму рассчитывает управляющее воздействие, которое в виде токового сигнала 4-20 мА с выхода В/ВО7 поступает на регулирующий клапан в комплекте с цифровым регулирующим контроллером DVC6010 (поз. 8-4). По этой же линии клапан и контроллер обмениваются информацией по HART-протоколу. Положение клапана, полученное по HART-протоколу на вход В/ВО7, показывается на индикаторе БРУ-7 (поз. 8-3).

5. Построение принципиальной электрической схемы

В курсовом проекте разработана принципиально-электрическая схема контура контроля и регулирования температуры под колпаком печи. В состав данного контура входят: датчик температуры ТХА-0192, преобразователь сигнала термопар МТМ 402-01, блок ручного управления БРУ-7, регулирующий клапан в комплекте с цифровым регулирующим контроллером DVC-6010, микроконтроллер ROC 809, имеющий свой модуль питания и следующие модули расширения: аналогового ввода AI-12, аналогового вывода АО-16, дискретного ввода DI, модуль HART. Преобразователь, блок ручного управления питаются от сети ~220 В. Микроконтроллер питается от внешнего блока питания БП-24. Регулирующий клапан питается непосредственно через информационные входы.

Сигнал с термопары поступает на клеммы 1-2 модуля Х2 преобразователя МТМ 402-01 (поз 1-2), и через клеммы 1-2 модуля Х1 нормализованный сигнал подается на клеммы 1-2 модуля аналогового ввода AI 12 микроконтроллера.

Заданная температура с блока ручного управления (поз. 1-3) (клеммы 9-10) передается на клеммы 3-4 модуля аналогового ввода AI-12.

С клемм 10-11-12 блока ручного управления (поз. 1-3) на клеммы 1-2-10 модуля дискретного входа DI контроллера поступает сигнал о том, будет ли задание расхода кислорода осуществляться вручную (замкнуты клеммы 9-10) или с рабочей станции (замкнуты клеммы 11-10).

С клемм 1-2 модуля аналогового вывода АО-16 на клеммы 1-2 задатчика (поз. 6-3) поступает сигнал о положении регулирующего клапана.

Следует отметить, что так как почти везде используются токовые сигналы, то соединение выводов должно быть перекрестным, то есть «+» прибора подключается к «-» модуля контроллера, а «-» прибора подключается к «+» модуля контроллера.

6. Решение поставленных функциональных задач

6.1 Постановка и описание задач

Предположим, что до внесения возмущения по нагрузке объект управления находится в состоянии динамического равновесия при

. Внесенное возмущение вызовет отклонение регулируемой координаты от заданного значения, которое можно описать следующим дифференциальным уравнением

(6.1.1.1)

где

- отклонение заданного значения регулируемой координаты от текущего (величина, противоположная по знаку сигналу ошибки);