Смекни!
smekni.com

Проектирование составных токарных резцов (стр. 2 из 3)

Отклонения на габариты, как правило, соответствуют отклонениям на свободные размеры. Предельные отклонения высоты державки не должны превышать h11…h12, а ширины —js16. Длина резца должна соответствовать ±IT16. Предельные отклонения от перпендикулярности боковой поверхности державок к опорной поверхности должны лежать в пределах ± 30¢…± 2° в зависимости от размеров и формы поперечного сечения и типа резцов. Передние, задние углы и угол наклона главной режущей кромки не должны превышать ± 1°. Углы в плане — не более ± 2°.

Шероховатость рабочих поверхностей (передней, главной и вспомогательной поверхностей) должна быть не выше 8–9 классов. Шероховатость поверхностей державки не более 5—6 классов.

Корпус составного резца следует изготавливать из углеродистых и легированных конструкционных сталей марок 35, 45, 40Х, 40ХГНМ и др. Твердость после закалки должна быть в пределах 40 – 50 HRCэ.

На поверхности резцов не должно быть трещин, следов припоя, также коррозии.


1.2 Проектирование составного токарного резца

Задание. Спроектировать токарный проходной резец.

Исходные данные:

Материал обрабатываемой заготовки – сталь 9ХС.

Главный угол в плане j=80°.

Сечение державки резца 25х25.

Обработка – чистовая.

1.2.1 Выбор марки материала инструмента, материала корпуса и назначение геометрических параметров

Руководствуясь рекомендациями таблицы 1 приложения настоящего методического пособия, для условий чистовой обработки стали 9ХС, выбираем твердый сплав марки Т14К8 из группы Р20 (ИСО). Для чистовой обработки назначаем: главный задний угол a = 6°, вспомогательный задний угол a1 = 6°, передний угол g = 5°. Вспомогательный угол в плане j1 = 10°, радиус при вершине r = 0,8 мм [2].

Для изготовления корпуса принимаем конструкционную легированную сталь марки 40Х с механическими характеристиками: sb = 900 МПа, sт = 700 МПа.

1.2.2 Проверочный расчет на прочность

1. По таблице [2] назначаем режимы резания:

для чистового точения стали 9ХС —глубина резания t = 2 мм, подача S = 0,2 мм/об (табл.14 главы 4 [2]).

2. Определяем изгибающий момент:

2.1. Вылет резца принимаем l =1,25 Н =1,25х25 = 31,25 мм.


2.2. Рассчитываем силу Pz по формуле (2):

2.3. Определяем изгибающий момент


3. Определяем момент сопротивления изгибу по формуле (4)

Напряжения изгиба, возникающие в державке резца, определяем по формуле (1):


6. Для изготовления корпуса принимаем сталь марки 40Х с механическими свойствами sв = 900 МПа, sТ = 700 МПа [5]. Допускаемое напряжение на изгиб определяем по формуле (7):

2. Фасонный резец

2.1 Общие сведения

Фасонные резцы предназначены для обработки поверхностей деталей, имеющих сложный профиль. Применяются они в массовом, крупносерийном и мелкосерийном, а иногда и в единичном производстве для обработки наружных и внутренних поверхностей. Фасонные резцы обеспечивают идентичность формы, точность размеров и высокую производительность, а также допускают большое количество переточек [1].

По способу крепления фасонные резцы делятся на стержневые, призматические и круглые. Стержневые резцы применяются в основном на универсальных токарных и токарно-револьверных станках. По форме державки они похожи на обычные токарные проходные резцы для наружного точения.

Призматические резцы (рис.1) применяются на токарных одно- и многошпиндельных токарных автоматах и полуавтоматах с установкой в специальные резцедержатели. В зависимости от направления движения резца к обрабатываемой заготовке призматические резцы делятся на радиальные и тангенциальные. Радиальные резцы имеют направление подачи по радиусу к обрабатываемой заготовке. Тангенциальные резцы (рис.3) осуществляют касательное по отношению к фасонной поверхности обрабатываемой заготовки движение подачи. Чаще всего они используются для чистовой обработки несложных фасонных поверхностей. Для крепления фасонных призматических резцов в резцедержателях служит ласточкин хвост. Применяются призматические фасонные резцы только для наружного точения. По сравнению с круглыми резцами они обладают более высокой жесткостью крепления и, как следствие, повышенной точностью изготовления обрабатываемых поверхностей.


а) б)


Рис. 1. Виды установок призматических фасонных резцов.

а) б)


Рис. 2. Виды установок круглых фасонных резцов.

Рис.3. Установка тангенциального призматического резца.


Рис. 4. Установка круглого резца с образующими, расположенными по винтовой линии.


Круглые фасонные резцы (рис.2) применяются для наружного и внутреннего точения на токарных одно- и многошпиндельных автоматах и полуавтоматах. Они делятся на дисковые резцы, устанавливаемые на оправках, и хвостовые резцы, закрепляемые за хвостовик. Они бывают с кольцевыми образующими фасонных поверхностей, или с образующими, расположенными по винтовой линии (рис.4). Последние резцы применяются в основном при обработке внутренних фасонных поверхностей. Круглые резцы по сравнению с призматическими резцами имеют большее количество переточек.

Для обеспечения положительных задних углов у резцов на отдельных участках фасонного профиля применяется наклонное расположение базы крепления фасонного резца относительно оси обрабатываемой заготовки. Оно может обеспечиваться поворотом вокруг осей Y, Z, а также в плоскости крепления призматического радиального резца. В последнее время наиболее эффективным является поворот резца вокруг оси Z (рис.1,б, 2,б).


3. Резьбонакатные ролики

3.1 Расчет диаметров резьбонакатных роликов

3.1.1 Наружный диаметр резьбонакатных роликов

Определение наружного диаметра резьбонакатных роликов, наиболее важного для тангенциального способа накатывания резьб тангенциальными головками параметра, необходимо выполнять по формулам для предварительного получения результатов и точного.

Предварительно наружный диаметр роликов определяется по формуле [5]

(17)

где: Dp – наружный диаметр роликов;

d3– диаметр заготовки;

Kp– число заходов резьбы роликов;

d1 – внутренний диаметр резьбы, определяемый из выражения:

d2 min – минимальный средний диаметр резьбы детали;

– высота профиля резьбы инструмента.

Точное значение наружного диаметра роликов может быть определено по формуле [13,14], полученной из условия равенства нулю суммарных осевых перемещений в конце накатывания.

Исходя из этого условия, расчёт диаметров роликов выполняется по следующей формуле

(18)

где

– коэффициент влияния «закручивания» роликов.

– среднее значение положения полюса зацепления, может быть выражено зависимостью

(19)

где

– cреднее отклонение линии зацепления от внутреннего диаметра накатываемой резьбы, соответствующее шагу 1мм (таблица 9).

В результате расчётов диаметров резьбонакатных роликов для накатывания остроугольных резьб с различной степенью точности выявлена прямо пропорциональная связь [12, 13] между средним значением

характеризующим положение полюса зацепления, и шагом накатываемой резьбы при заданной высоте головки профиля резьбы инструмента (рисунок 8).

Рисунок 8. График зависимости среднего отклонения линии зацепления от шага резьбы: 1-по ГОСТ 6111-52; 2 - по ГОСТ 16093-81 (4h); 3-по ГОСТ 16093-81 (6g); 4- по ГОСТ 4608-81; 5-по СТП 37-101.7504-76.


Таблица 9. Величина среднего отклонения линии зацепления, соответствующая шагу 1мм, для различных типов и классов точности резьбы, мм.

Стандарт на резьбу Расчётнаявысота
Среднеезначение
Стандартна резьбу Расчетнаявысота
Среднеезначение
ГОСТ 16093-814h6g 0,325 Р 0,1310,134 СТП (ВАЗ)37.101.7502-75 0,325 Р 0,111
ГОСТ 4608-81Т0 Т02 0,325 Р 0,1080,109 ГОСТ 6211-69 0,320 Р 0,118
СТП 37.101.7504-76 0,27063 Р 0,093 ГОСТ 6111-52 0,38058 Р 0,227

3.1.2 Средний диаметр резьбонакатных роликов