Смекни!
smekni.com

Сплавы с особым коэффициентом линейного расширения (стр. 3 из 3)

Процессы изменения атомно-кристаллической структуры при нагреве сплавов Fе — Ni— С — V при водят к изменению механических свойств (рис.4.2 ). Наибольший прирост прочностных свойств отмечается при нагреве в области температур 550 - 700 °С, когда наиболее активно протекают процессы атомного пере распределения и выделения мелкодисперсных фаз FезС и VC. Повышение более чем вдвое уровня значений прочностных свойств после нагрева до 600 - 650 °С сопровождается лишь незначительным изменением величины ТКЛР — не более чем на (0,5 - 1,0) • 1(Н К-1 (см. рис. 4.2).

Результаты проведенных исследований показывают, что у сплавов системы Fe — Ni — С с добавками ванадия могут быть получены весьма высокие значения механических свойств (σ02 — до 1000 МПа, σв — до 1300 МПа) при сохранении низких значений ТКЛР (< 2 • 10-6 К-1). Эти сплавы, кроме этого, обладают хорошей морозостойкостью (температура начала мартенситного превращения у них ниже -196 °С). По уровню прочностных свойств сплавы в 2 - 4 раза превосходят сплавы инварного класса (типа 36Н), выпускаемые промышленностью в настоящее время.

5. Влияние легирования MnИ Со на температурную зависимость внутреннего трения в инварных Fe-Ni-CСПЛАВАХ

Температурные зависимости внутреннего трения (ТЗВТ) служат важным источником сведений о структуре и релаксационных процессах в сплавах, в частности в инварах. Поскольку инварные сплавы обладают магнитоупругой связью, целесообразно изучить затухание упругих колебаний в этих сплавах, обусловленное релаксационной и гистерезисной составляющей потерь.

Релаксационные эффекты в инварном сплаве (-36% Ni), легированном углеродом, были изучены в герцовом диапазоне частот. Автором работы на кривых ТЗВТ был выявлен максимум при температуре 473 К, который является суперпозицией пика Финкельштейна—Розина и магнитодиффузионного пика, последний из которых устранялся наложением магнитного поля напряженностью 250Э.

Релаксационные эффекты в ГЦК-Fе-Ni-сплавах инварного состава (-36% Ni), легированных углеродом, изучались также в килогерцовом диапазоне частот. В этом случае температура пика ВТ возросла и составила 520—550 К, однако отчетливого разделения двух вкладов в затухание упругих колебаний без наложения поля не удалось осуществить из-за относительно высокой температуры Кюри сплавов, содержащих около 36%Ni(513 К,525 К,546 К). Кроме того, как на низких частотах так и на частотах килогерцового диапазона при температуре ниже комнатной наблюдается рез кое увеличение затухания упругих колебаний, связанное с потерями энергии на магнитоупругий гистерезис.

В работе исследована ТЗВТ в килогерцовом диапазоне частот в ГЦК Fе—Ni—С-сплавах, содержащих около 30 маc. % Ni, дополнительно легированных углеродом для обеспечения инварного эффекта. Релаксационный пик ВТ в этих сплавах, обнаружен при температурах 548—564К, значительно превышающих точку Кюри, уменьшение которой до 438—449 К обусловлено понижением со держания Ni(-30 маc. %) Показано, что интенсивность пика возрастает с увеличением концентрации С, а энергия активации процесса составляет 1.1 эВ, что соответствует энергии активации диффузии углерода в аустените.[4]

Одним из способов управления магнитным со стоянием аустенита является легирование элементами замещения, в частности Mnи Со, по-разному влияющих на термодинамическую активность углерода в аустените и его распределение в твердом растворе. Для изучения релаксационных процессов в парамагнитной области важным обстоятельством является то, что эти элементы (Со- ферромагнетик, Mn–антиферромагнетик) заметно смещают точку Кюри Fe-Niсплавов. Для изучения совместного влияния элементов внедрения и замещения на релаксационные процессы в инварных сплавах в работе [4] исследованы ТЗВТ в килогерцевом диапазоне частот (1,5-2 кГц) в ГЦК Fe-Niсплавах, которые содержат около 30 мас. % Ni,1 мас.%С и небольшие добавки Mnи Со. Для сравнения проведены измерения ТЗВТ в сплавах близкого базового состава, не содержащих углерод.

Для определения влияния Мnи Со на интенсивность затухания упругих колебаний в ГЦК Fе—Ni—С сплавах построены температурные зависимости ВТ за вычетом фона с использованием гауссовской аппроксимации (рис.2.1). Добавление Мnв сплав Fе-30.1% №-0.44% Мп-1.22% С смещает максимум ВТ влево по оси температур и уменьшает его интенсивность по сравнению с параметрами пика ВТ в сплаве Fе-30.1%,Ni-1.18% С (см. рис.5.1, кривая 2). Введение Со в сплавы Fе-30.3% Ni-0.5% Со-1.22% С и Fе-30.6% Ni-1.0% Со-1.05% С приблизительно вдвое увеличивает высоту максимума затухания по сравнению с затуханием в сплаве Ре—30.1% №-1.18% С, а с увеличением содержания кобальта пик уширяется и смещается в сторону более высоких температур (см. рис.2.1, кривые 3, 4). На концентра ционной зависимости высоты максимума затухания для легированных Мnи Со сплавов наблюдается значительное отклонение значений δmах от кривой, усредняющей точки для сплавов Fе—Ni—С (рис. 5.2).

Противоположное влияние Мnи Со на интенсивность пика ВТ коррелирует с данными амплитудной зависимости внутреннего трения (АЗВТ), согласно которым введение Мnуменьшает, а легирование Со увеличивает уровень амплитуднозависимых потерь в ГЦК Fе—Ni—X—С (X = Мn, Сo)-сплавах в широком диапазоне амплитуд деформаций.

Таким образом, Со, в отличии от слабого влияния Mn, увеличивает уровень рассеяния упругой энергии в инварных Fе—Ni-С сплавах с содержанием Niоколо 30%,что может быть обусловлено следующими обстоятельствами. Увеличение уровня ВТ в ГЦК Fе—Ni-сплавах наблюдалось при изменении концентрации Niвыше 29,2 % до 36%, что в свою очередь сопровождалось расширением интервала распределения сверхтонких магнитных полей. Увеличение сверхтонкого магнитного поля на ядрах атомов железа в сплаве Fе—Ni-Со-С по сравнению с его значение для сплава Fе—Ni-С указывает на то, что введение Со в сплав, содержащий около 30% Ni, изменяет его магнитное состояние подобно увеличению содержания Niвыше 29,2 %. Учитывая тот факт, что Со увеличивает термодинамическую активность углерода в аустените, можно ожидать влияние этого элемента на распределение атомов С в кристаллической решетке и на соотношение числа одиночных атомов С и пар атомов С-С в ближайших соседних междоузелиях, что может усилить вклад в затухание упругих колебания в Fе—Ni-Со-С аустените. В тоже время такой карбидообразующий элемент как Mn, связывая углерод в аустените в атомные кластеры, обогащенные Mnи С, может снизить интенсивность затухания упругих колебаний (рис. 2.3). В случае роста числа одиночных атомов С увеличивается вероятность существования диполей С-С в 3-5 координационных сферах, которые согласно модели дают основной вклад в релаксацию Финкельштейна-Розина.

Не исключается также другой механизм, заключающийся во вкладе в релаксацию непосредственно одиночных атомов С, которые в паре с одним из легирующих элементов или вакансий, созданных закалкой, образуют соответствующие диполи, вращение которых под воздействием упругих напряжений порождает ВТ.



Выводы

1.Для γ-Fe-Ni сплавов характерно, что в слабом ферромагнитном состоянии спонтанная магнитострикция обратнопропорциональна квадрату температуры, а коэффициент спонтанной магнитострикции имеет положительное значение. В сильном ферромагнитном состоянии при температурах ниже tк в γ-Fe-Ni сплавах магнитный вклад в ТКЛР практически не обнаруживается и только в узкой области температур, примыкающей к Тс , спонтанная магнитострикция сплавов по составу близких к Ni пропорциональна квадрату температуры, а коэффициент спонтанной магнитострикции имеет малые значения и отрицательный знак.

2.Со в отличие от слабого влияния Mn, увеличивает уровень рассеяния упругой энергии в инварных Fe-Ni-С.

3.В результате деформации сплавов Fe-Ni и Fe-Ni-С наблюдается уменьшение ТКЛР и повышение температуры перегиба Тп. С ростом степени деформации уровень прочностных свойств повышается.