Смекни!
smekni.com

Принципи та методи вимірювання (стр. 2 из 3)

2. Контрольно-повірочні вимірювання, похибки яких не перевищують деяких наперед заданих значень. До них відносять лабораторні вимірювання фізичних величин за допомогою зразкових і технічних засобів високих класів точності. Такі вимірювання проводяться у метрологічних лабораторіях Держстандарту України та науково-дослідних інститутах.

3. Технічні вимірювання — вимірювання, які проводяться у промисловості і визначаються невисоким класом точності засобів вимірювання.

Залежно від одиниць вимірювання значення вимірюваних величин можна розділити на абсолютні, відносні та приведені.

Абсолютними називаються вимірювання, значення яких подані у абсолютних одиницях фізичних величин (наприклад, тиск у паскалях, довжина в метрах, час у секундах та ін.).

Відносними називаються вимірювання, значення яких подані як відношення вимірюваної величини до однойменної, умовно прийнятої за одиницю, або ж у відсотках (наприклад, вологість повітря).

3. Принципи та методи вимірювання

Для точних вимірювань фізичних величин у метрології розроблені способи використання принципів і засобів вимірювальної техніки, застосування яких дозволяє вилучити із результатів вимірювань ряд систематичних і випадкових похибок і позбавити експериментатора необхідності вводити поправки для їх компенсації, а в деяких випадках взагалі одержувати вірогідні результати. Багато способів використання так і залишаються лише способами, їх застосовують лише в окремих, небагатьох випадках. Проте є й такі способи використання, які необхідні при численних вимірюваннях багатьох величин. Коли вони стають загальними, їх називають методами вимірювань.

Принцип вимірювання — фізичне явище або сукупність фізичних явищ, які покладені в основу вимірювання певної величини. Наприклад, вимірювання температури за допомогою використання термоелектричного ефекту, зміни електричного опору терморезисторного перетворювача чи зміни тиску термометричної речовини газового термометра та ін.

Засіб вимірювальної техніки — технічний засіб, який застосовується під час вимірювань і має нормовані метрологічні характеристики.

Метод вимірювання — сукупність способів використання засобів вимірювальної техніки та принципів вимірювань для створення вимірювальної інформації.

Вимірювальна інформація — інформація про вимірювані величини та залежності між ними у вигляді сукупності їх значень.

У метрології у процесі вимірювань найширше застосовуються прямі методи вимірювання, що забезпечують визначення шуканої величини за експериментальними даними.

До прямих методів вимірювання відносяться: метод безпосередньої оцінки, метод порівняння з мірою, метод протиставлення, нульовий (компенсаційний), диференційний та ін.

Метод безпосередньої оцінки полягає в тому, що вимірювана величина визначається безпосередньо за показниками шкали вимірювального приладу (наприклад, зважування на циферблатних вагах, вимірювання тиску пружинним манометром).

Вимірювання цим методом проводяться дуже швидко, просто і не вимагають високої кваліфікації, оскільки не потрібно ускладнювати вимірювальний прилад і виконувати складні обчислення. Проте точність таких вимірювань невисока через вплив зовнішнього середовища та розмірів шкали приладу.

При проведенні точніших вимірювань слід користуватися методом порівняння з мірою, який полягає в тому, що вимірювана величина порівнюється з величиною, відтвореною мірою. Результат вимірювання визначається як сума значень порівняльної міри та показів вимірювального приладу або приймається рівним значенню міри (наприклад, аналітичні ваги).

Метод протиставлення — це метод порівняння з мірою, коли вимірювана і відтворена мірою величини одночасно діють на прилад порівняння, за допомогою якого визначається співвідношення між цими величинами. Значення шуканої величини визначається після досягнення рівноваги за значенням зрівноважуючої величини. Наприклад, на важільних вагах маса зваженого вантажу визначається за масою поставлених ваг.

Нульовий (компенсаційний) метод полягає у порівнянні вимірюваної величини з мірою, а результуючий ефект дії величин на прилад доводиться до нуля. Цей метод широко використовується в автоматичних вимірювальних приладах: автоматичних мостах, потенціометрах, аналізаторах рідин, газів та ін. На результати вимірювань, як правило, майже не впливають зовнішні чинники і джерело живлення вимірювальних електричних схем.

Диференціальний (різницевий) метод полягає в тому, що вимірювальним приладом визначається різниця між вимірюваною величиною і величиною-мірою. Наприклад, вимірювання надмірного тиску в апаратах відносно атмосферного тиску за допомогою диференціального манометра типу ДМ.

Метод збіжності є різновидом методу порівняння з мірою і полягає в тому, що різниця між шуканою і відтвореною мірою величинами вимірюється за збігом шкал або періодичних сигналів. Цей метод використовується при вимірюванні точних сигналів часу, частоти обертання тощо. Крім перелічених методів, у метрологічній практиці використовуються багато інших: інтерферентний — для точних вимірювань лінійних величин, фотоелектричний — у машинобудуванні та ін.

4. Електричні методи вимірювання неелектричних величин

При метрологічних роботах і технологічних вимірюваннях параметрів широко використовуються електричні методи вимірювань неелектричних величин: температури, рівня, тиску, витрат, різних показників якості готової продукції і сировини. Це пов'язано з тим, що у більшості випадків технологічні лінії виготовлення продукції мають досить велику протяжність, і здійснювати одночасний контроль основних параметрів просто неможливо. Тому вимірювані технологічні параметри перетворюють в електричні величини-сигнали, які можна передавати на значні відстані. Перетворення неелектричних величин в електричні дозволяє спростити сам процес вимірювання, підвищити його точність і навіть виміряти величини, які раніше ніколи не вимірювалися. Перетворення неелектричних величин в електричні сигнали проводиться за допомогою вимірювальних перетворювачів. Лінійні переміщення, деформації чутливих елементів, перетворені в електричні сигнали, передаються на значну відстань і за допомогою відтворюючих засобів перетворюються у вимірювану величину.

Для вимірювання неелектричних величин досить широко використовуються такі електричні методи, як тензоелектричні, індукційні, фотоелектричні, п'єзоелектричні та ін.

Тензометричний метод ґрунтується на використанні тензорезисторів, які змінюють свій опір під дією деформацій механічних чутливих елементів (наприклад, мембран). Сучасні тензорезистори, які використовуються у засобах вимірювання тиску типу "Сапфір-22", виготовляються методом плазмового напилювання і забезпечують одержання результатів вимірювань тиску з досить високою точністю. Тензорезистори розміщуються на спеціальних сапфірній та металевій мембранах і під'єднуються до мостової схеми струмового перетворювача з уніфікованими сигналами 0-5; 0-20; 4-20 тА.

Вимірювальні перетворювачі "Сапфір-22" забезпечують вимірювання тисків до 100 МПа, розрідження — до 10-5 МПа, різниці тисків — від 2,5 Па до 16 МПа при класах точності ОД; 0,25; 0,5.

Основними перевагами перетворювачів "Сапфір-22" є використання незначних деформацій чутливих елементів, що підвищує їх надійність, стабільність лінійних характеристик, а також забезпечує вібростійкість.

П'єзоелектричний метод ґрунтується на використанні властивостей деяких кристалічних матеріалів утворювати електричні заряди на їх поверхні під дією прикладеної сили. Це явище називається п'єзоефектом. Найчастіше для первинного перетворювача використовується монокристал кварцу, що пояснюється такими його перевагами перед іншими матеріалами, як механічна міцність, високі ізоляційні якості, незалежність п'єзоелектричних властивостей від температури у широкому діапазоні (20

400 °С) та негігроскопічність. Кварцеві пластини вирізаються перпендикулярно до електричної осі монокристалу кварцу. Під дією тиску р на електричних гранях пластини виникають електричні заряди Q= KSp, де К — п'єзоелектрична стала (для кварцу К = 2 • 10-2 Кл/Н); S— ефективна площа грані, м2. П'єзоелектричний перетворювач під'єднується до електронного підсилювача постійного струму. Величина сигналу: Uc= Q/C, де С — загальна ємність вимірювальної ланки.

Завдяки "стіканню" заряду п'єзоелектричні перетворювачі використовуються для вимірювання динамічних навантажень, тисків, вібрацій. Вони надзвичайно жорсткі, мають високу частоту власних коливань та незначні деформації. Крім того, вони дуже малі за розмірами. Недоліком п'єзоелектричних перетворювачів є їх високий електричний опір і неможливість використання для статичних вимірювань через "стікання" електричного заряду пластин. Верхня межа вимірювання тиску таких приладів сягає 100МПа, а за рахунок збільшення площі пластин (при паралельному їх включенні) чутливість перетворювачів можна значно підвищити і заміряти тиски, нижчі за 1Па.

Ємнісний метод ґрунтується на зміні ємності датчика за рахунок діелектричних властивостей самого середовища. Цей метод можна використовувати при вимірюванні рівня, густини, вологості та інших технологічних параметрів, використовуючи при цьому відому формулу площинного конденсатора: εS/l, де ε — діелектрична проникливість; S— площа пластин; l— відстань між пластинами.