Смекни!
smekni.com

Шпаргалка по Технологии резания (стр. 4 из 6)

В литературе [63] предлагаются схемы обработки цилиндрических поверхностей, использующих принцип протягивания (рис. 3.1). Для реализации принципа протягивания в предлагаемых схемах необходимо кроме главного движения и подачи обеспечить вращение инструмента. Несмотря на очевидные преимущества обработки показанных схем они не нашли широкого применения в производственной практике. В качестве станков, на которых могут применяться предложенные технологические схемы, могут быть использованы любые токарно-винторезные и горизонтально-расточные станки, для чего необходимо произвести соответствующую их модернизацию. Модернизация имеющихся типов станков позволит реализовать и другие методы обработки с применением вращающегося инструмента: фрезоточение, в том числе и с разделением припуска между резцами, упрочнение чеканкой, центробежное раскатывание и центробежное хонингование.

Повышение производительности и стойкости режущего многозубого инструмента базируется на следующих соображениях. При непрерывном точении передняя поверхность режущего клина постоянно находится в контакте со сбегающей стружкой. В начале процесса резания в рабочей зоне возникает высокая температура и в течение некоторого промежутка времени процесс является нестационарным. При непрерывном точении температура резания θ вначале быстро возрастает, затем темп роста её снижается и, наконец, достигнув некоторого значения θ = θс – стабилизируется. Если же процесс обработки остановить в момент, когда температура резания не достигла своего наибольшего значения и возобновить его после некоторого перерыва, то предельное значение температуры на поверхности инструмента будет ниже, чем θс. Снижение температуры будет тем больше, чем длительнее цикл τц = τр + τв и чем больше отношение времени вспомогательного хода τв к времени рабочего хода τр инструмента. Это видно из сопоставления кривых 2 и 3.

Кривая 2 соответствует циклу, длительность которого τц = 10 с, причем τр = τв = 5 с. Кривая 3 описывает изменение температуры на контактных поверхностях инструмента в цикле длительностью τц = 33 с, причём рабочий ход и соответствующее ему повышение температуры продолжается 3 с, а вспомогательный ход и остывание резца 30 с. При механической обработке существуют операции, при которых естественно возникают перерывы в работе режущего инструмента. t = 4·10-3м; S = 0,5·10-3об/мин; без охлаждения): 1 – точение непрерывное; 2 – точение прерывистое

По достижению момента tст – температура в зоне обработки достигает максимального для данных условий стационарного значения Θmax. Скольжение стружки по поверхности лезвия происходит в условиях практически сухого трения, между стружкой и лезвием имеет место схватывание и образование нароста, затрудняющих сход стружки, что вызывает увеличение касательных и нормальных составляющих силы резания.

При охлаждении смазывающе-охлаждающая жидкость не в состоянии проникнуть между стружкой и передней поверхностью. При прерывистом резании в зависимости от скорости протекания процесса режущий клин не успевает нагреться до величины Θ′max и в момент t1 выходит из зоны обработки. За время прохождения резца по дуге окружности от точки t1 до точки t2 и следующего вхождения в зону обработки режущий клин охлаждается до температуры Θmin. Этот процесс периодически повторяется. Разность ΔΘ1 = Θ Бmax − Θ2 является резервом повышения износостойкости.

Для операций с прерывистым процессом резания может быть применен метод скоростного фрезерования наружных и внутренних крупномодульных резьб, который известен еще как вихревое нарезание резьбы. Для этого при расточке необходимо выбрать такую подачу и ширину резцов, чтобы весь металл срезался целиком, а не только во впадинах витков резьбы. Учитывая, что скоростное резьбофрезерование является эффективным, при условии, когда шаг нарезаемой резьбы не менее 4 мм, а эффективность этого метода в 2,5…3 раза больше по сравнению с обычным резьбофрезерованием, то его применение может значительно повысить производительность расточки отверстий. Для скоростной расточки могут использоваться токарные станки, оснащенные специальным устройством для крепления резцовой головки и приводом, осуществляющим ее вращение. Важным моментом при такой обработке является образование мелкой раздельной стружки, срезаемой отдельно каждым резцом. В этом случае стружка легко удаляется из отверстия вымыванием смазывающе-охлаждающей жидкостью. Появляется возможность автоматизации процесса обработки. Таким образом, проведенный анализ особенностей процесса резания показывает, что в настоящее время возможно повышение производительности в основном на базе выбора и обоснования новых кинематических схем резания, внедрения в производство новых прогрессивных многозубых режущих инструментов, работающих с периодическим смещением режущей кромки в зоне резания или периодической заменой работающих зубьев. Эксперименты показывают, что при этом существенно уменьшается и сила резания при одних и тех же подачах.



Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошиекаталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дёшевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определённые структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т. д.; двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т. д.; одномерные объекты — вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты — материалы, полученные введением наночастиц в какие-либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.

Особый класс составляют органические наночастицы как естественного, так и искусственного происхождения.

Нанокомпьютеры

Достижения современных информационных технологий и очевидная неизбежность появления в ближайшем будущем принципиально новых разработок порой тесно переплетаются со вчерашней фантастикой.

Автор: Георгий Жувикин | Раздел: | Дата: 01 февраля 2005 года

Достижения современных информационных технологий и очевидная неизбежность появления в ближайшем будущем принципиально новых разработок порой тесно переплетаются со вчерашней фантастикой.

Просмотр некоторых популярных сайтов, посвященных будущим компьютерным технологиям, показывает, что в Сети уже закладываются основы нанокомпьютерного сленга. Находим, например, что нанокомпьютер - это:

  • квантовый или механический компьютер нанометровых размеров с высокой производительностью;
  • компьютер, логические элементы которого имеют молекулярные размеры; контроллер наноробота должен быть нанокомпьютером;
  • компьютер микроскопических размеров, разрабатываемый на основе нанотехнологий (Techtarget, whatis.techtarget.com/definition).

Некоторые другие термины, а также картины нанокомпьютерной футурологии можно найти на сайте www.nanonewsnet.ru. Разумеется, терминологические проблемы - не главное, чем озабочены сегодня исследователи, творцы нового компьютерного железа. Изменение физических свойств материалов при уменьшении размеров рабочих элементов логических устройств, способы сборки этих устройств и их системной интеграции, возможность детерминированного управления их функционированием, потери информации и термодинамика наноустройств, физические пределы представления и обработки информации в них, - эти и многие другие важнейшие проблемы составляют сегодня список горячих тем научных исследований и разработок, на поддержку которых правительства развитых стран и крупные корпорации выделяют огромные средства.

Наноэлектроника, нанокомпьютеры, нанороботы и молекулярно-механические автоматы не просто переведут информационные технологии на более совершенную элементную базу, но и создадут совершенно новые социальные проблемы, на фоне которых обсуждаемые сегодня клонирование животных или использование стволовых клеток в медицине покажутся не столь ужасными. С переходом на уровень нанотехнологий станет возможным снижение минимально допустимых размеров компьютера до субклеточного уровня. Плотность хранения информации в искусственных системах уже сейчас может превышать плотность информации, кодирующей наследственность человека. Способы представления информации в системах, созданных человеком, почти достигли физических пределов, установленных фундаментальными законами природы.