Смекни!
smekni.com

Технология конструкционных электротехнических материалов (стр. 4 из 14)

Этот расчет, пригодный только для одномерного потока теплоты, называется графоаналитическим и является приближенным, В нем не учтены перепад температуры по толщине диэлектрика (искажение электрического поля и повышение градиента напряжения в поверхностных слоях), а также теплопроводность материала электродов. Поэтому тепловой пробой часто наступает при напряжении ниже расчетного. Более точные методы расчета разработаны академиками Н.Н. Семеновым и ВА. Фоком только для изделий простейшей конфигурации [16].

4 Нагревостойкость твердых и жидких диэлектриков (вопрос 12)

Общефизические характеристики, такие как плотность материала, геометрические размеры, пористость, вязкость, влагостойкость и др., нор­мируются для каждого вида материала и, сле­довательно, подлежат определению при его ис­пытании. Кроме того, при определении других характеристик (механических, электрических) часто требуется знать вышеуказанные параметры с некоторой допускаемой погрешностью [2, С.204].

Нагревостойкость – это способность электроизоляционного ма­териала длительно выдерживать предельно допустимую температуру. Для электроизоляционных материалов, применяемых в элек­трических машинах и аппаратах, установлено семь классов нагревостойкости (таблица 4.1).

Таблица 4.1 - Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости

Предельно допустимая

рабочая температура, °С

Y…………………………………....

90

A……………………………………

105

E…………………………………….

120

B………………………………….....

130

F…………………………………….

155

H…………………………………….

180

C…………………………………….

выше 180

К классу Y относятся органические диэлектрики: полистирол, полиэтилен, волокнистые непропитанные материалы на ос­нове целлюлозы, картон, бумаги, хлопчатобумажные ткани и др.

К классу А относятся пропитанные (лаками и другими соста­вами) хлопчатобумажные и шелковые ткани (лакоткани) и бумаги (лакобумаги), а также многие пластмассы – гетинакс, текстолит и др.

В класс Е входят такие материалы, как триацетатцеллюлозные и лавсановые изоляционные пленки, стеклотекстолит на бакелито­вой смоле и др.

В класс В входят все клееные слюдяные материалы, в которых применены клеящие составы класса нагревостойкости А или Е (шеллачные, бакелитовые смолы, лаки на основе этих смол и высы­хающих растительных масел).

К классу F относятся материалы на основе слюды, асбеста, стек­лянных волокон, склеенных лаками повышенной нагревостойкости (полиуретановыми, эпоксидными и др.).

В класс Н входят кремнийорганические лаки и резины, а также композиционные материалы, состоящие из слюды, стеклянных воло­кон, асбеста, склеенных при помощи кремнийорганических смол и лаков, отличающихся повышенной стойкостью к теплу.

Класс С составляют преимущественно диэлектрики неорганиче­ского происхождения (электрокерамика, стекло, микалекс, асбест и др.). Из органических высокополимерных диэлектриков в этот класс входит политетрафторэтилен (фторопласт-4) [2, С.213].

5 Основные физико-химические характеристики

проводниковых материалов (вопрос 16)

Проводниковые материалы в основном служат для передачи электрической энергии и ее непосредственного преобразования в тепловую, механическую и другие виды энергии. Проводниками могут служить твердые тела, жидкости и газы. Твердыми проводниками являются металлы, различного рода сплавы, модификации углерода и композиции на их основе. К жидким проводникам относятся расплавленные металлы и различные электролиты. Большинство металлов являются жидкими проводниками лишь при повышенных температурах [2, С.39].

Электролитами являются водные растворы кислот, солей, щелочей и расплавы ионных соединений.

Все газы и пары металлов становятся проводниками при высокой напряженности приложенного электрического поля. Основным условием при этом является возникновение ударной или фотоионизации и газ может стать проводником с электронной и ионной электропроводимостью. При равенстве количества положительных и отрицательных заряженных частиц в объеме сильно ионизированного газа получают равновесную проводящую среду так называемого четвертого состояния вещества – плазму.

К основным характеристикам проводниковых материалов относятся: удельное сопротивление и удельная проводимость; температурный коэффициент удельного электрического сопротивления; термоэлектродвижущая сила (термоэдс); теплопроводность; теплостойкость; предел прочности на разрыв и относительное удлинение при разрыве (рисунок 5.1).

Знание этих характеристик позволяет оценить электрические, тепловые и механические свойства проводникового материала.

Рисунок 5.1 – Схема строения металлического проводника

Удельное сопротивление материала r является основ­ной величиной, характеризующей материал проводника. Для измерения удельного сопротивления проводников обычно поль­зуются образцами, изготовленными из исследуемого материала в виде отрезков проводов неизменного сечения. В этом случае, зная сопротивление R, площадь поперечного сечения S и длину l образца, удельное сопротивление материала можно вычис­лить, исходя из следующего известного соотношения

, т.е.
. (5.1)

В Международной системе единиц (СИ) r измеряют в ом­метрах (Ом×м). Однако на практике для оценки удельного со­противления проводников широко пользуются внесистемной единицей Ом·мм2/м, связанной с единицей СИ соотношением 1 Ом-мм2/м = 10-6 Ом×м = 1 мкОм×м

Удельное сопротивление проводников находится в пределах от 0,016 для серебра до 1,6 мкОм-м для фехралей (жаропроч­ных сплавов на железохромовой основе), т. е. имеет диапазон в два порядка.

Часто применяется величина, обратная удельному сопротивлению и носящая название удель­ной проводимости, которая равна

. (5.2)

Так как величина, обратная электрическому сопротивлению и называемая проводимостью, измеряется в единицах Си в сименсах (1/Ом = 1 См), то единица удельной проводимости

равна 1 См/м.

Удельное сопротивление (а следовательно, и удельная проводимость) в основном зависят от средней длины свободного пробега электрона в данном проводнике, которая, в свою очередь, зависит от строения материала проводника. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления, а примеси, искажая решетку, приводят к увеличению его. Даже небольшое наличие примеси (приблизительно 0,5 %) приводит к увеличению ρ на 5

55 %.

Значительное возрастание ρ наблюдается при сплавлении двух металлов в том случае, если они образуют твердый раствор, т. е. образуют при затвердевании совместную кристаллизацию и атомы одного металла входят в кристаллическую решетку другого [2, С.57].

Повышенная электропроводность проводниковых материалов обусловлена большим количеством обобществленных электронов, которые классической электронной теорией металлов рассматриваются как электронный газ .

В соответствии с этими представлениями свободные электроны находятся в состоянии хаотического теплового дви­жения со средней скоростью и, сталкиваясь с колеблющимися атомами кристал­лической решетки. Среднее расстояние l, проходимое электроном между двумя столкновениями, называют длиной свободного пробега, средний промежуток вре­мени между двумя столкновениями – временем свободного пробега. Время свобод­ного пробега вычисляется по формуле

. (5.3)

Средняя кинетическая энергия электронов, находящихся в непрерывном хаоти­ческом движении, линейно зависит от температуры

, (5.4)

где

Дж/К – постоянная Больцмана. Температуре T= 300 К соответ­ствует
м/с.

Распределение электронов по энергетическим состояниям, характеризуемое ве­роятностью р (Е), подчиняется статистике Максвелла – Больцмана и описывает­ся экспоненциальной функцией

. (5.5)

При этом считается, что в каждом энергетическом состоянии может находиться любое число электронов, а при температуре абсолютного нуля энергия всех сво­бодных электронов равна нулю.

Если в проводнике существует электрическое поле, то под действием этого поля элек­троны приобретают ускорение, пропорциональное напряженности поля Е, в резуль­тате чего возникает направленное движение электронов со средней скоростью

. (5.6)