Смекни!
smekni.com

Проектирование маршрута технологического процесса механической обработки заданной детали (стр. 7 из 10)

Например, при обработке ступенчатых валов по принципу
последовательной концентрации операций вспомогательное время можно
уменьшить, в частности, за счет снижения времени на обратный (холостой) ход. Вариант, при котором обработка начинается со ступени большого диаметра и проводится в несколько проходов менее предпочтителен по сравнению с обработкой в один проход. При этом сокращается и длина пути резания, т. е. и основное время обработки.

Несмотря на явную выгоду, такое решение обычно целесообразно
использовать только при обработке жестких валов с небольшим перепадом
диаметров. При обработке заготовок по принципу параллельной
концентрации операции (многоинструментальная наладка), в которой
осуществляется одновременная обработка значительных по размерам шеек
вала, снимаются фаски, обрабатываются заплечники, вытачиваются канавки и т.д. Расчет основного времени и режимов резания следует вести по лимитирующему резцу.

Учитывая результаты расчета режимов резания на
многоинструментальную наладку, расчет основного времени ведут по формуле:

Принята следующая последовательность назначения режимов резания: сначала назначают глубину резания, затем задают величину подачи, потом скорость резания, затем скорость вращения шпинделя станка.

Расчетно-аналитическим методом вычислим режимы резания для токарной обработки. Глубина резания назначается в зависимости от вида обработки, т.к. обработка черновая выбираем t = 3 мм. Для черновой обработки выбираем значение подачи s = 0,3 мм/об.

Скорость резания рассчитывается по эмпирической формуле:

Для углеродистой стали Kg=1; sv=600; для резца nv=1,75

Knv — коэффициент, учитывающий состояние поверхности заготовки, равен 0.8 для поковки.

Kiv — коэффициент, учитывающий вид инструментального материала, для ВК8 равен 0.4

T — время износа материала резца, для одноинструментальной обработки 30-60 мин.

Показатели степеней x, y, m и коэффициент Cv выбираем по таблицам; для подачи 0,3 мм/об и наружного продольного точения:

Cv=350; x=0,15; y=0,35; m=0,20.

После расчета получаем значение скорости резания 150 м/мин.

Мы привели пример расчета режима резания по эмпирической формуле. Далее мы будем назначать их, исходя из следующих соображений:

— токарная черновая обработка

V=100 м/мин

S= 0,2 ¸ 0,4 мм/об

t=3 мм

— токарная чистовая обработка

V=120 ¸ 150 м/мин

S=0,01 ¸ 0,05 мм/об

t=1 мм

— сверлильная, фрезерная и координатно-расточная обработка

V=25 ¸ 30 м/мин

S=0,01*dн

Следует учитывать, что при многоинструментальной обработке все инструменты, закрепленные на одном суппорте, имеют одинаковые рабочий ход и подачу. Число оборотов шпинделя и основное время для всех инструментов одинаково. При параллельной обработке заготовок, расположенных на значительном расстоянии друг от друга, не позволяющем производить обработку каждой заготовки одним резцом, эта схема обработки не будет отличаться от обычной, так как, если заготовки по ширине одинаковые, то длина рабочего хода определяется одним из любых резцов, а если длина резания разная, то длина рабочего хода определяется по лимитирующему резцу при прочих равных условиях.

Методика расчетов режимов резания следующая:

1. Исходя из размеров токарной обработки указанных в наладке,
определяется длина рабочего хода (L d.o.) по формуле:

L d. o. = L d +L n,

где L d - длина резания;

Ln - величина подвода, врезания и перебега инструмента (см.
приложение).

Длину подвода, врезания и перебега инструмента определяют по таблицам (см. приложение)

2. Исходя из обрабатываемого материала (см. технические условия на
деталь), на инструменты (см. схему наладки) назначается подача на
оборот шпинделя So по таблице ( см. приложение)

3. Определяется стойкость инструмента. (Для резцов оснащенных
сменными многогранными пластинами стойкость
инструмента можно принять равной 30 минутам).

4. Определяется скорость резания (V) по формуле:

V = Vooae K1 K2 K3,

где Vooae – скорость резания;

K1 K2 K3 – коэффициенты, зависящие от марки и твердости материала детали и инструмента.

Табличное значение скорости и резания Vooae и коэффициентов
K1 K2 K3 при обработке стальных и чугунных заготовок определяется по таблицам (см. приложение).

5. Расчетное число оборотов (частота вращения) детали определяется по формуле

n = 1000V / пd

где d - диаметр заготовки.

6. Определяется основное время обработки То по формуле:

То = Lр.х. / s0 n

где Lp.x. - длина рабочего хода;
s0 - подача на оборот;
n - число оборотов.

При обработке валов на токарных прутковых и многошпиндельных
автоматах, фрезерных, сверлильных, шлифовальных и других станках
необходимо использовать соответствующую справочную литературу [1-5]
Нормирование технологических операций рассмотрим на примере обработки ступенчатого вала.

Рассмотрим варианты схем чернового обтачивания шеек вала с учетом затрат основного времени. При первом варианте обтачивание шеек
осуществляется от большого диаметра к меньшему, а основное
время ( Т 01) определяется по формуле:

T01 = l1 + 2l2 + 3l3 / ns.

Для второго варианта: T02 = l1 + 2l2 + 2l3 / ns.

Для третьего варианта: T03 = l1 + l2 + 2l3 / ns.

Шейки осуществляется при уже не жесткой третьей, самой меньшей по диаметру шейки, что может привести к погрешностям их обработки.
Четвертый вариант имеет тот же недостаток.

В третьем и пятом варианте наименее жесткая шейка обрабатывается
последней, что предпочтительней. При пятом варианте возникает
необходимость дважды переустанавливать заготовку (выполняя рабочий ход) 1, переустановку, рабочий ход 2, переустановка, рабочий ход 3) что вызовет
дополнительные погрешности обработки. Таким образом выбираю вариант
три который должен обеспечивать высокую производительность
и точность черновой обработки вала.

Для четвертого варианта: Q04 = l1 + l2 + 2l3 / ns.

Для пятого варианта: Q05 = l1 + l2 + 2l3 / ns.

Для шестого варианта: Q06 = l1 + l2 + 2l3 / ns.

Учитывая в нашем случае l1 = l2 = l3, то

Q01 = 6l/ns, T02 = 5l/ns, T03 = 4l/ns, Q04 = 4l/ns, T05 = 4l/ns, T06 = 4l/ns.

Таким образом наименее производительным оказались первый и второй варианты, а остальные - одинаковые.

Шестой вариант имеет существенный недостаток заключающийся в том, что полной обработке меньшего диаметра вал будет неравножестким. При обработке других шеек вал будет деформироваться, а возникшие погрешности невозможно исправить из-за отсутствия припуска.

11. Сравнительная характеристика методов обработки детали

Обработка резанием

Литье под давлением

Обработка резанием — процессы механического срезания поверхностных слоев материала в виде стружки лезвийными или абразивными инструментами на металлорежущих станках с целью получения деталей с заданными формой, размерами и качеством поверхностей. Основные виды процессов обработки резанием: точение, растачивание, фрезерование, строгание, сверление, зенкерование, развертывание, протягивание, шлифование, полирование, суперфиниш, доводка. Разрабатываемая деталь выполняется с помощью токарной обработки. Процессы обработки резанием имеют свои уникальные технологические возможности: малую энергоемкость и большую объемную производительность; относительная простота и универсальность формы режущих инструментов, обеспечивающих получение простейших и сложных поверхностей. Для обработки деталей резанием применяют металлорежущие станки всех основных групп. При массовом и крупно-серийном типах производств широко используют станки-автоматы. Технологический процесс формообразования литьем под давлением выполняют на специальных литейных машинах. Основные преимущества процесса литья под давлением: высокая производительность, высокая точность размеров отливок, возможность получать тонкостенные детали сложной формы, низкая трудоемкость, рациональное использование исходного материала, высокая чистота поверхностей отливки (5-8 класс). К наиболее существенным недостаткам литья под давлением относятся: пористость массы заготовки (из-за высоких скоростей движения жидкого материала при заполнении формы и быстрого остывания металла в форме), высокая стоимость пресс-форм.

12. Маршрутная технологическая карта

Важнейшим этапом выполнения курсового проекта является окончательное заполнение маршрутной технологической карты. В нее вносится предлагаемый маршрут механической обработки детали с указанием всех предлагаемых изменений и дополнений.

В условиях массового производства вал может быть обработан на одношпиндельном фрезерно-центровальном станке. Так же параллельно осуществляется фрезерование торцев, затем зацентровываются отверстия. Более сложная наладка в данном случае экономически оправдана большой партией обрабатываемых заготовок.