Смекни!
smekni.com

Алкани як паливо Октанове та цетанове число (стр. 2 из 5)

У 1927 р., після того як було виявлено, що різні бензини сильно різняться своїми детонаційними властивостями, для характеристики моторного палива були введені стандарти. Для найкращого з відомих в той час бензинів — ізооктану ( 2,2,4-триметилпентану ), який детонує тільки при високих степенях стиснення, було прийнято октанове число 100, а для н- гептану, особливо схильного до детонації, — октанове число 0. Октанове число будь - якого палива показує, скільки відсотків ізооктану містить штучна суміш ізооктану з н-гептаном, яка при випробовуванні в особливих умовах у стандартному одноциліндровому двигуні має такі ж детонаційні властивості. Вивчення багатьох синтетичних вуглеводнів показало, що в ряді алканів октанове число зменшується з подовженням ланцюгу і збільшується з її розгалудженням. Алкени мають вищі показники, ніж відповідні алкани, причому їх октанові числа збільшуються із зміщенням подвійного зв’язку до центру молекули. Циклопарафіни менш схильні до детонації, ніж нормальні парафіни, а ароматичні вуглеводні відрізняються особливо високими октановими числами.

Бензини прямої гонки складаються головним чином з алканів, і тому їх октанові числа коливаються у межах від 80 до 28. Однак завдяки технологічним вдосконаленням вдалося настільки збільшити октанові числа рідкого палива, що на зміну моторам із степенем стиснення близько 4 прийшли сучасні високоефективні двигуни, що працюють при степені стиснення 9 - 10 і вище.

Антидетонаційні сполуки

Безперервне покращення антидетонаційних властивостей бензину частково зумовлено появою нових технологічних процесів нафтопереробки, але головним чином пов’язано з відкриттям того факту, що детонація може бути придушена додаванням деяких речовин, найважливішою з яких є тетраетилсвинець ( ТЕС ), запропонований Міджлі і Бойдом у 1922 р. Ця металорганічна сполука була знайдена в результаті випробовування численої кількості речовин, досліджуваних у зв’язку з первинним відкриттям, що йод, анілін і хлорокис селену до деякої міри зменшують детонацію.

Історія його відкриття була наступною. Кеттеринг, науковий директор фірми ‘Дженерал Моторс’ доручив інженерам Міджлі, Бойду і Хохвальту зайнятися проблемою пошуку добавок до бензину, що придушують його детонацію.Був зібраний дослідний двигун, на якому була перевірена правильність повідомлення про те, що невеликі кількості йоду покращують характеристику моторного палива. Далі стали випробовувати такі розчинні в бензині речовини, які можна було дістати або приготувати без великих зусиль. З різноманітних сполук, що були ефективними детонаторами, найкращим виявився хлорокис селену. Тоді едіссоновський чисто емпіричний метод був залишений і почались спрямовані пошуки і передбачення на основі періодичної системи елементів. Були систематично вивчені етильні і фенильні похідні селену, а також його сусідів по таблиці Мендєлєєва і одержані результати представлені у вигляді кривої, що виражає залежність антидетонаційного ефекту від порядкового номеру елементу. Диетилселен мав очікувані властивості. Диетилтелур виявився у декілька разів ефективніше, ніж всі випробувані раніше речовини. Потім пошуки привели через тетраетилолово до тетраетилсвинцю.

Отже. в 60 -ті роки у США майже всі сорти бензину містили тетраетилсвинець ( зараз виявлена велика екологічна шкода цього важкого металу ); ті бензини, в яких додаванням ТЕС октанове число доведене до 93 і вище, надходять у продаж під назвою ‘етиловані’.

Для синтезу ТЕС раніше використовувалась реакція Гріньяра:

4С2H5MgBr + 2PbCl2 —- Pb ( C2H5 )4 + 4MgClBr + Pb

Надалі промисловий метод полягав в тому, що на сплав свинцю з натрієм діють хлористим етилом при помірних температурах і тисках:

4PbNa + 4C2H5Cl —- Pb ( C2H5 )4 + 4NaCl + 3Pb

Тетраетилсвинець відгоняють з парою, а свинцевий шлам сплавляють в чушки.

‘Етилова рідина’ містить, окрім тетраетилсвинцю ( 63% ), також диброметан ( 26% ), дихлоретан ( 9% ) і барвник ( 2% ). Диброметан є суттєвим компонентом, оскільки він реагує з окисом свинцю, що утворюється при згорянні ТЕС, і перетворює її на леткий бромистий свинець, який викидується з циліндрів з вихлопними газами. Виробництво великих кількостей диброметану спочатку являло проблему, оскільки бром не був доступний у достатній кількості. Ця проблема була вирішена вилученням брому з морської води, одна тона якої містить близько 60 г брому. Спочатку вилучення брому проводилось через додавання аніліну до хлорованої морської води з наступним виділенням брому з відфільтрованого осаду 2,4,6-триброманіліну. Пізніше бром виділяли з рапи окисленням хлором, відганяли з током повітря і поглинають содовим розчином, з якого бром може бути потім легко виділений ( ефективність процесу 95% ):

3Na2CO3 + 3Br2 — - 5NaBr + NaBrO3 + 3CO2

Вміст тетраетилсвинцю в автомобільних бензинах коливається від 0,2 до 0,8 мл/л, причому верхня межа встановлюється законом. Авіаційні бензини містять більші кількості ТЕС. Вплив тетраетилсвинцю на детонаційні властивості різноманітних сортів бензину залежить від їх первинного октанового числа і вуглеводневого складу. Цей вплив тим більший, чим менше октанове число вихідного бензину; із збільшенням концентрації ТЕС ефективність його зменшується. Для двигунів з високим ступенем стиснення, які працюють на високооктанових бензинах з великим вмістом ароматичних вуглеводнів, застосовується тетраметилсвинець, який перевищує ТЕС за термічною стійкістю і антидетонаційній дії при роботі двигуна в жорстких умовах.

Дизельне і ракетне паливо

В двигунах Дизеля стисненню піддається тільки повітря, причому температура в результаті цього піднімається до 290 - 340 С. Пальне впорскується майже в кінці ходу стиснення і спалахує само. Дизельне паливо не повинно бути летким, і звичайно воно складається з фракцій, що киплять в інтервалі між кипінням гасу і важких мастил. Внаслідок конструктивних особливостей двигунів Дизеля, високооктанове паливо для них менш придатне, чим низькооктанове. Здатність палива до спалахування виражається в цетаночих числах, які визначають за сумішшю цетану ( н- гексадекану ), прийнятого за 100, і alfa - метилнафталіну, цетанове число якого прийнято рівним нулю. Для більшості автомобільних дизелей потрібне паливо з цетановим числом вище 45; таким чином, до вуглеводневого складу дизельного і звичайного моторного палива ставляться протилежні вимоги.

Паливо для реактивних двигунів виготовляється з гасу, виділеного з певних сортів сирої нафти і підданого обробці для підвищення його термічної стійкості. Ароматичні вуглеводні для цього палива непридатні, оскільки вони горять кіптявим полум’ям, що призводить до втрати пального. н- Алкани згоряють добре, але вони мають вищі температури плавлення і тому можуть погіршувати текучість палива при низьких температурах.

ВИРОБНИЦТВО БЕНЗИНУ

Якби при переробці сирої нафти обмежувались її перегонкою або іншими фізичними методами розділення, які зберігають незмінним хімічний склад нафти, то таким чином не вдавалося б задовольняти світову потребу в бензині, а його октанове число було б надто низьким. Тому використовуються хімічні методи переробки нафти, в результаті яких природа її компонентів змінюється. Одним з перших почали використовувати процес термічного крекінгу, або нагрівання під тиском, при якому відбувається піроліз великих молекул гасової фракції і утворюється суміш нижчих вуглеводнів, які мають бажану леткість. Термічний крекінг більш ніж вдвічі збільшив вихід моторного палива з сирої нафти. Виявилося також, що бензини, одержані шляхом крекінгу, перевищують за якістю більшість природних бензинів завдяки підвищеному вмісту олефінів, які мають кращі властивості у відношенні детонації. Це відкриття призвело до розвитку процесу термічного реформінгу, який полягає в тому, що бензин прямої гонки для покращення його якості нагрівають під тиском. При термічному крекінгу і термічному реформінгу виходять значні кількості газоподібних вуглеводнів, в тому числі етилену і інших простих олефінів. Для використання цих газоподібних продуктів були розроблені процеси їх полемеризації і інші способи перетворення в бензин; олефінові фракції знайшли також застосування як сировина для синтезу ряду продуктів.

Термічні процеси крекінгу і реформінгу мають, проте, ряд обмежень. Вивчення детонаційних властивостей чистих вуглеводнів показало, що високооктановий бензин повинен містити переважно розгалуджені парафіни, розгалуджені олефіни з подвійним зв’язком в середині ланцюга, циклічні олефіни і ароматичні вуглеводні. Але при термічному крекінгу не відбувається розгалудження ланцюгів або циклізації, а утворені ненасичені вуглеводні в основному є alfa - олефінами. Подальші пошуки привели до значно вигідніших методів каталітичного крекінгу і каталітичного реформінгу. При каталітичних процесах збільшується вміст в бензині вуглеводнів з розгалудженим ланцюгом, олефінів з подвійним зв’язком в середині молекули, відбувається циклізація і ароматизація. Таким чином, каталітичні методи ідеально відповідають підвищеним вимогам, які ставлять до пального, і тому у виробництві бензину вони повністю витіснили звичайні термічні методи. Відмінність між цими процесами зумовлена тим, що при термічному крекінгу відбувається вільнорадикальні ланцюгові реакції, а при каталітичному крекінгу під дією кислотних каталізаторів протікають іонні реакції. Механізм цих перетворень з’ясований нафтохіміками, і викладається нижче.