Смекни!
smekni.com

Проектирование и расчет различных пластмассовых изделий (стр. 2 из 5)

Если элемент имеет трубчатую форму, дополнительно проверяется толщина стенки δ. Во избежание местного выпучивания должно соблюдаться условие:

D/δ ≤ 2,2 √E∙l02/(1-μ2)·π·N),

где D – диаметр осевой линии стенки трубы;

μ– коэффициент Пуассона;

Е/(1- μ2) =Епр – приведенный модуль упругости.

Если элемент имеет форму прямоугольной пластины, например, обшивки стен или панелей, проверка устойчивости производится сравнением действующего усилия Тх с критической силой Ткр. Сила Тх должна быть меньше Ткр по крайней мере в 1,5 раза.

Критическая сила, приходящаяся на единицу ширины пластины, определяется по формуле:

Ткр = k·π2·Dc/b2 ≥ kзап · Тх,

где Dc = Eпр·δ3/12 – цилиндрическая жесткость пластины;

δ – толщина пластины;

b – ширина пластины;

k – коэффициент, зависящий от соотношения длины пластины a, измеренной вдоль усилия, к ее ширине b.

Значения k в зависимости от отношения a/b:

a/b0,4 0,5 0,6 0,7 0,8 0,9 1,0 и более

k 9,44 7,69 7,05 7,00 7,29 7,93 7,69

Для сжатой при изгибе обшивки (панели) действующее усилие равно:

Тх = σ·δ,

где σ – наибольшее напряжение сжатия при изгибе.

5.4 Изгибаемые элементы

Рассчитываются на прочность и на прогибы. Прочностной расчет ведется и по нормальным напряжениям по формуле:

M / Wнт ≤ [σ]и,

и по скалывающим напряжениям:

Q·Sнт / (Iнт ·b) ≤ [σ]ск,

где Q – поперечная сила;

Sнт – статический момент сдвигающейся части сечения;

Iнт – момент инерции всего сечения относительно нейтральной оси;

b – ширина плоскости сдвига.

Прогибы от изгибающего момента определяются по формулам сопротивления материалов. Для свободно лежащей на двух опорах балки, несущей равномерно распределенную нагрузку qн, проверка прогиба производится по формуле:

f / l = 5/384 ·qн ·l3 /(E·I),

где f – прогиб;

l – длина балки между опорами;

qн – нагрузка;

Е – модуль упругости.

Пластмассы являются полимерными материалами, то есть состоят из длинных цепных макромолекул, которые под действием любых деформирующих сил (растяжения, сжатия, изгиба и т.д.) сдвигаются друг относительно друга. Поэтому рекомендуется вычислять прогибы пластмассовых балок с учетом сдвига. Напряжения сдвига увеличивают прогиб пропорционально квадрату отношения высоты балки к пролету. Действительный прогиб в таком случае равен:

fo = f·(1 + A·E/G·h2/l2),

где f – прогиб от изгибающего момента;

А – коэффициент, зависящий от способа нагружения и опирания балки, а также от формы сечения;

G – модуль сдвига.

При прямоугольном сечении балки рекомендуются следующие значения коэффициента А:

1)для незащемленной балки на двух опорах (прогиб в середине пролета):

а) равномерно распределенная нагрузка – 0,96;

б) неравномерно распределенная нагрузка – 1,2;

2)для консоли (прогиб конца консоли):

а) равномерно распределенная нагрузка – 0,4;

б) неравномерно распределенная нагрузка – 0,3.

Например, прогиб в середине пролета свободно опирающейся на две опоры балки прямоугольного сечения при равномерно распределенной нагрузке равен:

fо= 5/384 · qн·l4 /(E·I) ·(1 + 0,96·E/G·h2/l2)

При отсутствии данных о модуле сдвига можно пользоваться формулой, справедливой для однородных материалов:

E/G = 2(1 + μ)

5.5 Сжато-изгибаемые элементы

Рассчитываются с учетом площадей нетто Fнт и брутто Fбр:

N/Fнт + M·σсж / (ξ·Wнт·σи) ≤ [σсж],

где ξ = 1 – N/(φ·σсж·Fбр),

N – сжимающая сила;

Wнт – момент сопротивления сечения;

σсж – действующее сжимающее напряжение;

σи - действующее изгибающее напряжение;

сж] – допускаемое напряжение на сжатие;

φ – коэффициент, равный (π2 · Е/σсж)/λ2.

Если изгибающий момент мал, и второе слагаемое дает меньше 10 % общей суммы, надо делать дополнительную проверку на устойчивость, пренебрегая изгибающим моментом. Такая проверка может дать менее благоприятные результаты. В этом случае при проектировании следует принимать меры, обеспечивающие работоспособность рассчитываемого элемента: выбрать более прочный материал, увеличить поперечное сечение и т.д.

Прогибы сжато-изгибаемых элементов вычисляют по формулам для изгибаемых элементов, но увеличивают их в связи с совместным действием сжатия и изгиба:

fo = f/ξ


6.Расчет и проектирование пластмассовых емкостей

Емкости различной формы и размеров изготавливаются из химически инертных пластмасс. Формулы, используемые для расчета и проектирования таких изделий, различаются в зависимости от формы емкости, а следовательно, от схемы приложения внутреннего давления.

Примем обозначения:

Р – давление на стенки емкости;

U и T – меридиональная и кольцевая силы, действующие на единицу длины приложения;

σuи σт – меридиональное и кольцевое напряжение в стенках емкости;

Δ и ψ – радиальное по главному радиусу и угловое перемещение стенок;

Е и μ – модуль упругости и коэффициент Пуассона материала стенок емкости;

ρ – плотность материала, помещенного в пластмассовую емкость (например, жидкости);

R – радиус сферической емкости;

S – толщина стенки;

φ – угол выбранной точки от вертикальной оси;

α – угол конической емкости;

r – радиус цилиндрической емкости;

х – длина стенки конуса.

С учетом этих обозначений при расчете емкостей разных форм используются формулы:

Сферическая емкость:

U = P·R/2; T = P·R/2; σu = P·R/(2·S); σт = P·R/(2·S);

Δ = P·R/(2·Е·S)·(1-μ)· sin φ; ψ = 0


Коническаяемкость:

U = P·х· tgα/2; T = P·х· tgα; σu = P·х· tgα /(2·S); σт = P·х· tgα /·S;

Δ = P·х2· sin α ·tgα /(2·Е·S); ψ –

Цилиндрическаяемкость:

U = P·r/2; T = P·r; σu = P·r/(2·S); σт = P·r/·S;

Δ = P·r2/(2·Е·S)·(2-μ); ψ = 0

Цилиндрическая емкость, находящаяся под гидростатическим давлением:

U = 0; T = ρ·g·x·r; σu = 0; σт = ρ·g·x·r /·S;

Δ = ρ·g·x·r2 /(Е·S)·(1-μ)· sin φ; ψ = ρ·g·r2/(E·S)

Если предусматривается сварка стенок емкости, то при определении конструкторских параметров этой емкости необходимо учитывать коэффициент прочности шва φґ.

Так, при ориентировочном расчете сферических крышек и днищ толщину стенки определяют по формуле:

S ≥ P∙D /(2,3∙[σ]∙ φ)ґ

Для более точных расчетов рекомендуется пользоваться формулами:

- для глухих сферических днищ и крышек (без отверстий или с отверстиями, ослабляющее действие которых компенсируется какими-либо конструктивными элементами):

S ≥ P∙Dвн2 /(8∙[σ]∙ φґ ·H);

- для сферических днищ и крышек, ослабленных отверстиями:

S ≥ P∙Dвн2 /(8·z·[σ]∙ φґ ·H),

где Dвн – внутренний диаметр днища или крышки;

Н – высота днища или крышки;

z – коэффициент формы, определяемый графически;

- для круглой плоской крышки или днища такой же формы:

σ = 0,3· (Dб/S)2·P/y ≤ [σ]

f = 0,046· Dб4·Р/(E·S3) ≤ [f]

где Dб - диаметр днища или крышки по центрам болтов;

y – коэффициент формы, определяемый графически;

f и [f] – наибольший и допускаемый прогибы днища или крышки.

7.Расчет емкостей из стеклопластиков

Такой расчет имеет свои особенности. Причинами особенностей являются анизотропия свойств стеклопластиков и возможность ее регулирования в ходе изготовления изделий.

Наибольшая эффективность конструкций из армированных пластмасс проявляется тогда, когда анизотропия механических свойств наиболее выгодно соответствует напряженному состоянию оболочки или обеспечивает ее максимальную жесткость по отношению к заданной нагрузке. При этом действующая нагрузка воспринимается наполнителем и связующим пропорционально их модулям упругости Ен и Есв и их объемному содержанию в полимерном материале Cн и Cсв.. Так, доля усилий, воспринимаемых связующим, равна:

q = Ес / [Ен·(1-Ссв)]

Так как модули упругости существующих смол и стекла различаются в 10 – 20 раз, а оптимальное содержание связующего в стеклопластиках составляет 25 – 40 % (Ссв = 0,25 – 0,40), то воспринимаемая связующим доля усилий составляет примерно 2 – 4 %. Таким образом, несущая способность в стеклопластиковых конструкциях определяется стеклонаполнителями. Это обусловливает специфику расчета, которая заключается не в нахождении толщины стенки емкости, а в определении n - числа нитей или слоев ткани, проходящих через единичный отрезок. Число n зависит от вида намотки цилиндрических оболочек.

Примем обозначения:

Т1 и Т2 – осевое и кольцевое усилие в оболочке;

f – разрушающее усилие стеклопластика;

f1и f2 –разрывные усилия нитей стеклоткани по основе и по утку;

n1и n2 – плотность укладки нитей по основе и по утку;

k = f2·n2 / (f1·n1) – относительная прочность стеклоткани;

а – коэффициент, учитывающий характер нагружения емкости (а= -1 в случае осевого нагружения оболочки; а = 0 для равномерного растяжения оболочки; а = 1 для оболочки под внутренним давлением).

Усилия в стенках стеклопластиковой емкости для различных конструкций равны:

Намотка однонаправленными стеклонаполнителями слой на слой под оптимальным углом намоток к образующей оболочки: