Смекни!
smekni.com

Технология монтажа осевых насосов и вентиляторов (стр. 2 из 3)

Распределение параметров потока по высоте лопастей. Течение в ступени осевой машины носит резко выраженный пространственны характер, т. е. скорости и давления существенно изменяются по высоте лопастей. Очевидно, распределение параметров потока, а также сообщаемой жидкости энергии по высоте лопастей зависит от формы рабочих лопастей. В неблагоприятном случае вследствие неравномерного подвода энергии будут резко искажаться линии тока, а следовательно, и поля осевых скоростей. Потери в таких случаях возрастают.

Первым обратил внимание на необходимость согласования формы сечений и угла установки лопастей проф. Н.Е. Жуковский, создавший вихревую теорию гребных винтов и вентиляторов. Построенный в 1915г. по теории Жуковского вентилятор имел почти вдвое больший к. п. д. чем к. п. д. вентиляторов того времени.

Очевидно, наиболее целесообразными являются такие рабочие и направляющие лопасти, при которых нет радиальных перетеканий жидкости и соответственно осевая скорость по высоте лопастей постоянна. В этом случае поток наиболее упорядоченный, а потери – наименьшие.

Если во всех сечениях выполняется условие постоянства циркуляции (rcu=const), то осевая скорость постоянна по высоте лопастей, а поверхностями тока являются цилиндрические поверхности (ось цилиндров совпадает с осью вращения).

Закон постоянной циркуляции был открыт Н. Е. Жуковским и применен к расчету пропеллеров и вентиляторов (винты «Н.Е.Ж»). Теперь этот закон широко применяется при проектировании осевых машин. Из этого закона следует, что теоретический напор должен быть постоянным по высоте лопастей, ибо rcи=const и rc2u= const.

Влияние вязкости вносит лишь небольшие поправки к закону постоянной циркуляции; значительные отклонения имеют место лишь вблизи корневых и концевых сечений лопастей.

От закона постоянной циркуляции иногда отступают лишь при больших относительных диаметрах втулки ν

0,8 для упрощения изготовления лопастей, которые в этом случае выполняют цилиндрическими (постоянного профиля, незакрученными). Но это заметно снижает к. п. д. вентилятора даже при ν=0,8.

Максимальное давление, развиваемое вентилятором. Осевые насосы обычно выполняют низоконапорными, что связано с необходимостью обеспечить допустимую высоту всасывания. Вентиляторы, в отличие от насосов, стараются делать высоконапорными (с большими коэффициентами напора), чтобы избежать больших окружных скоростей. Поэтому важно определить условия, обеспечивающие наибольший напор при заданной окружной скорости, т. е. при которых коэффициент напора максимален.

Следующая формула указывает пути увеличения высоконапорности осевых вентиляторов (компрессоров):

_

Рmax = Рmax/ (ρuв2) = 0,8ηhυφ

Из формулы делаем вывод, что коэффициент напора растет с увеличением относительного диаметра втулки и коэффициента подачи. Вместе с тем увеличение φ и υ приводит к снижению к. п. д. ступени вследствие возрастания потерь в диффузоре, расположенном за спрямляющим аппаратом. Поэтому чрезмерное увеличение φ и υ в одноступенчатой (и даже двухступенчатой) машине оказывается нецелесообразным.

Влияние конечной высоты лопастей и радиального зазора на параметры работы насоса (вентилятора). По следующей формуле можно определить к. п. д. решетки в сечениях лопастей при условии, что известно обратное качество профиля μк или коэффициент лобового сопротивления сх.

1 – μk tgβ

ηp =

1 + μk ctgβ

Коэффициент сх в средних сечениях рабочих и направляющих лопастей находят по статистическим продувкам плоских пакетов. Однако при приближении к корневому и концевому сечениям сх резко возрастает, что вызывает снижение к. п. д.

Сложный пространственный характер течения в рабочих колесах и спрямляющих аппаратах не позволяет установить зависимость между геометрическими размерами лопастей и величиной коэффициентов сх и су. Поэтому данную формулу обычно используют только для оценки профильных потерь, без учета влияния конечной высоты лопастей, хотя принципиально эта формула позволяет учесть все потери.

Рассмотрим более подробно вторичные (концевые) потери, т. е. все потери, связанные с конечной высотой лопастей и наличием зазора между лопастями и корпусом. Торцевые стенки, ограничивающие лопасти (внутренняя поверхность корпуса и поверхность барабана или диска), оказывают двоякое воздействие на течение жидкости в ступени.

Во-первых, трение жидкости о стенки вызывает искажение поля скоростей: вблизи стенки скорости уменьшаются (до нуля на самой стенке). Трение о стенки является источником дополнительных гидравлических потерь, но они составляют сравнительно небольшую долю концевых потерь. Путем тщательного проектирования проточной части насоса и соответствующей обработки поверхностей можно уменьшить потери на трение о торцевые стенки.

Во-вторых, разность давлений между лицевой стороной профиля и тыльной стороной соседнего профиля вызывает движение жидкости вблизи стенки от лицевой стороны к тыльной стороне соседнего профиля. Это вторичное течение происходит вблизи торцовых стенок, где скорости малы, и поэтому градиент давления не может быть уравновешен действием центробежных сил, возникающих при повороте потока в межлопастных каналах. В результате такого вторичного течения вблизи торцовых стенок образуются вихревые движения (рис.7). Направления этих парных вихрей противоположны.

Рис.7. Парные вихри и вихри в зазорах.

Поскольку на образование парных вихрей расходуется часть энергии потока, тол к. п. д. решетки снижается. Кроме того, потери могут дополнительно увеличиваться за счет отрыва пограничного слоя с тыльной стороны лопастей, поскольку вторичные течения вызывают набухание пограничного слоя на этой стороне.

Опыты показывают, что при отношениях ,l/t>1,5 парные вихри не смываются, и поэтому величину вторичных потерь, вызванных парными вихрями и трением о торцовые стенки, можно считать не зависящей от высоты лопастей. На основании этого можно принять, что относительная величина концевых потерь обратно пропорциональна высоте лопастей, и определять к. п. д. ступени (совокупности рабочих и спрямляющих лопастей) по формуле Г. Флюгеля:

ηl

(1 – kl\l),

где η

– к. п. д. ступени с учетом только профильных потерь (конечная высота лопастей не учитывается); ηl– к. п. д. при конечной высоте лопастей, но без учета влияния зазора; kl– опытный коэффициент.

Величина опытного коэффициента kl зависит от относительного шага решетки, угла изгиба профилей и угла атаки. На расчетном режиме работы ориентировочно можно принимать kl≈ 1мм.

Следует отметить, что данная формула не корректна, ибо противоречит теории подобия: опытный коэффициент kl в этой формуле – размерная величина. Однако попытку «усовершенствовать» формулу Флюгеля введением в нее вместо высоты лопастей l относительной величины l/bтакже нельзя признать удачной.

Наличие радиального зазора между рабочими лопастями и корпусом приводит к перетеканию жидкости через зазор от лицевой стороны профиля к тыльной (рис.6). Оно также вызывает образование вихревого движения, однако направление вращения вихря в зазоре противоположно направлению вращения смежного парного вихря. Между этими двумя вихревыми движениями существует сложное взаимодействие. Действительно, увеличение зазора приводит к возрастанию интенсивности вихря в зазоре, однако при этом уменьшается разность давлений между смежными поверхностями соседних профилей, что приводит к снижению интенсивности соседнего парного вихря. Опыты показывают, что к. п. д. ступени при возрастании зазора до 1% от высоты лопастей остается практически неизменным. Это означает, что суммарная интенсивность вихря в зазоре и смежного парного вихря остается примерно постоянной.

Общая формула, учитывающая влияние всех концевых потерь может быть выражена таким образом:

ηδ,l= η

[1 – (kl+ kδ δ) /l + 0,01 kδ],

которая применима при δ ≥ 0,01.

Одновременно со снижением к. п. д. снижается развиваемый напор, но в большей степени, чем к. п. д., поскольку вторичные потери вызывают увеличение среднего по высоте лопастей угла отставания потока. Другими словами, вторичные течения приводят к уменьшению теоретического напора. Опыт показывает, что уменьшение напора наблюдается и при очень малых зазорах. Дело в том, что увеличение зазора всегда приводит к уменьшению разности давлений по обе стороны лопасти и, следовательно, к увеличению угла отставания потока.

1.4. Крепление оборудования к фундаментам.

Компрессоры, насосы, вентиляторы и другое оборудование закрепляют на фундаменте фундаментными и анкерными болтами.

Фундаментный болт (рис.8,а) – стальной стержень, нижняя закладная часть которого изогнута, разветвлена (рис.8,б) или заершена для лучшего сцепления с бетоном. Верхняя часть болта имеет резьбу для гайки. Фундаментные болты при монтаже заливают бетоном, поэтому, например, при отрыве выступающей части болта его необходимо вырубить из бетона.