Смекни!
smekni.com

Моделирование электропривода насосной станции (стр. 1 из 2)

КУРСОВАЯ РАБОТА

Тема:

«Моделирование электропривода насосной станции»

Воронеж 2010


Введение

В данной курсовой работе рассматривается электропривод насоса для подпитки тепломагистралей водой на ТЭЦ. Это тепло идет на нужды различных заводов, и на обогрев жилых зданий правого берега. В системе используется четыре насоса: три (дополнительные) могут питаться как от сети, так и входить в режим регулирования частотой для всех четырех двигателей, а один (основной) – двигатель, работающий с преобразователем частоты. Для удобства, мы рассмотрим систему, в которой только основной двигатель работает с преобразователем частоты.

ТЭЦ предназначена для нужд близлежащих заводов, а также это первый по значимости в Воронеже источник тепла для жилых домов.

Раньше на предприятии регулировка давления воды осуществлялось весьма неэффективным способом – дросселированием с помощью задвижек. При дросселировании регулирование расхода осуществляется за счет изменения эффективного сечения трубопровода с помощью заслонки. В этом случае насос, так же как и при отсутствии регулирования, тратит энергию на преодоление противодавления заслонки, а повышенное давление вызывает утечки жидкости и износ оборудования. Соответственно, уменьшается полезная мощность насоса. Добавим также, что описанный метод неэффективен, так как изменения давления подкачка воды тоже меняется. Этот способ связан с повышенным энергопотреблением, невысокой точностью регулирования технологических параметров, а также повышенным износом электрического, механического и гидравлического оборудования. Прямые пуски двигателей большой мощности вызывают ударные нагрузки в передаточных механизмах, недопустимые посадки напряжения в системах электроснабжения.

Использование регулируемого электропривода вносит следующие преимущества:

– значение КПД насоса зависит от частоты вращения двигателя, так как частота двигателя регулируется, то насос может работать с максимальной производительностью;

– если основной двигатель, которым управляет преобразователь не справляется с нагрузкой, подключаются дополнительные двигатели;

– дополнительные двигатели запускаются так, чтобы давление в системе не превысило определенного значения;

Наиболее современным способом регулирования насосов является регулирование с помощью преобразователей частоты.

В случае применения преобразователя частоты, осуществляется поддержание давления в гидросистеме независимо от расхода, с помощью регулирования частоты вращения электродвигателя насоса. Таким образом, при малых расходах насос вращается на малой скорости необходимой только для поддержания номинального давления и не расходует лишней энергии. Экономится электроэнергия, а так же вода, тепло и ресурс оборудования.

Данный курсовой проект посвящен моделированию системы водоснабжения, а именно моделированию насосной станции с преобразователем частоты.


1. Описание технологического процесса

Режим водопотребления в городе характеризуется большой неравномерностью расходов, с коэффициентом часовой неравномерности. Это значит, что днем в период максимального разбора воды ее часовой расход может в несколько раз превышать среднее значение суточного расхода. Ночью, наоборот, расход воды резко сокращается.

Непосредственное включение насоса в сеть в условиях сильной неравномерности расхода привело бы к ненормальному режиму работы насоса с недостаточным напором или, наоборот, с малой подачей и чрезмерным давлением. На такие режимы работы и насосы, и сеть водоснабжения не рассчитаны, при этом в сети происходили бы глубокие перепады давления, перебои в подаче воды, резко возросло бы потребление электроэнергии. Включение в сеть водоснабжения преобразователя частоты позволяет насосу и потребителям воды действовать по своим графикам, причем насос всегда работает в расчетном, наиболее выгодном и правильном режиме.

Автоматизация насоса позволяет избежать всех недостатков ручного управления. Благодаря автоматизации не требуется дополнительных затрат труда и участие человека в технологическом процессе. При достаточно частой подкачке можно не опасаться замерзания воды, что особенно опасно зимой в ночной период, когда расход воды практически прекращается.

Регулирование избытка воды или недостачи принято частотными регуляторами фирмы Mitsubishi.

Наружный водопровод для железнодорожной станции и для жилого населенного пункта проектируем объединенный, обслуживающий одновременно:

1. хозяйственно питьевые нужды;

2. производственные нужды;

3. противопожарные нужды.

2. Технические данные

Для моделирования технического процесса необходимо рассчитать асинхронный электродвигатель, который присоединяется к насосы.

Расчет характеристик двигателя:

Типоразмер электродвигателя 4А250М2У3.

Таблица 1 – Характеристики двигателя

Величина Значение
P2ном, кВт 90
Синхронная частота вращения, об/мин 3000
КПД, % 92,0
cosφ 0,9
Xµ, отн. ед. 5,2
, отн. ед.
0,029
, отн. ед.
0,078
, отн. ед.
0,016
, отн. ед.
0,13
Jд, кг∙м2 0,52
Sном, % 1,4
Число пар полюсов 2p=2

(Гн); (2.8)

(Гн); (2.9)

(Гн); (2.10)

(Гн); (2.11)

(Гн); (2.12)

(Гн); (2.13)

Преимущества:

1. Низкая стоимость внедрения и эксплуатации.

2. Снижение эксплуатационных расходов на обслуживание.

3. Экономия электроэнергии до 15–50%, с учетом различных суточных режимов работы.

4. Стабильность создаваемого давления за счет автоматического регулирования производительности насоса.

5. Повышение ресурса погружного насоса труб и запорной арматуры за счет исключения пусковых токов, исключения гидравлических ударов, плавного регулирования, плавного пуска и останова.

6. Возможность интеграции с системами учета расхода воды и электроэнергии.

7. Возможность работы с автономным аварийным источником.

8. Полностью необслуживаемый автоматический режим работы.

9. При наличии нескольких скважин обеспечивает периодическую смену работающего насоса.

10. При недостаточной производительности одного насоса автоматическое включение второго (при наличии нескольких скважин).

3. Математическое описание системы

Электрические машины в общем случае являются многофазными. Они описываются системами дифференциальных уравнений высокого порядка, анализ которых затруднен. Без ущерба качества можно перейти от многофазной электрической машины к двухфазной [1].

Формулы преобразования 3/2 и 2/3:

(3.1)

где kc – коэффициент согласования,

(3.2)

(3.3)

где

Уравнения для преобразования 3/2:

(3.4)

Уравнения для преобразования 2/3:


(3.5)

Реализация преобразования 3/2 в системе Simulink выглядит следующим образом:

Рисунок 2 – Схема преобразования 3/2

На вход блока преобразования 3/2 подаем 3-х фазное синусоидальное напряжение, на выходе получаем 2-х фазное напряжение статора:

Рисунок 3 – Осциллограмма 3-х фазного напряжения и 2-х фазного напряжения статора


Реализация преобразование 2/3 в системе Simulink выглядит следующим образом:

Рисунок 4 – Схема преобразования 2/3

На вход преобразователя 2/3 подаем 2-х фазные токи статора, на выходе получаем 3-х фазные токи:

Рисунок 5 – Осциллограмма 2-х фазных тока статора и 3-х фазных токов статора

Подсистема реализующая насосную характеристику:


(3.7)

Рисунок 6 – Моделирование насосной характеристики

Получим график насосной характеристики:

Рисунок 7 – График насосной характеристики