Смекни!
smekni.com

Схемы установок для выпаривания и конструкции выпарных аппаратов (стр. 4 из 6)

Интенсивность циркуляции в аппаратах с подвесной камерой (как и в аппаратах с центральной циркуляционной трубой) недостаточна для эффективного выпаривания высоковязких и особенно кристаллизующихся растворов, обработка которых приводит к частым длительным остановкам этих аппаратов для очистки рабочих поверхностей.

Аппараты с выносными циркуляционными трубами. Естественная циркуляция раствора может быть усилена, если раствор на опускном участке циркуляционного контура будет лучше охлаждаться. Этим увеличивается скорость естественной циркуляции в выпарных аппаратах с выносными циркуляционными трубами (рис. 10). При расположении циркуляционных труб вне корпуса аппарата диаметр нагревательной камеры может быть уменьшен по сравнению с камерой аппарата (рис. 8), а циркуляционные трубы 2 компактно размещены вокруг подогревательной камеры На рис 10 показан аппарат с одной выносной циркуляционной трубой, причем центробежный брызгоуловитель 3 для подачи вторичного пара также вынесен за пределы сепарационного пространства 4 аппарата. Конструкции таких аппаратов несколько более сложны, но в них добавляется более интенсивная теплопередача и уменьшается расход металла на 1 м2 поверхности нагрева по сравнению с аппаратами с подвесной подогревательной камерой или центральной циркуляционной трубой.

Аппараты с выносной нагревательной камерой. При размещении нагревательной камеры вне корпуса аппарата имеется возможность повысить интенсивность выпаривания не только за счет увеличения разности плотностей жидкости и парожидкостной смеси в циркуляционном контуре но и за счет увеличения длины кипятильных труб.

Аппарат с выносной нагревательной камерой (рис. 11) имеет кипятильные трубы, длина которых часто достигает 7м. Он работает при более интенсивной естественной циркуляции, обусловленной тем, что циркуляционная труба не обогревается, а подъемный и опускной участки циркуляционного контура имеют значительную высоту.

Выносная нагревательная камера 1 легко отделяется от корпуса аппарата, что облегчает и ускоряет ее чистку и ремонт. Ревизию и ремонт нагревательной камеры можно производить без полной остановки аппарата (а лишь при снижении его производительности), если присоединить к его корпусу две камеры.

Исходный раствор поступает под нижнюю трубную решетку нагревательной камеры и, поднимаясь по кипятильным трубам, выпаривается иногда подачу исходного раствора производят. Вторичный пар отделяется от жидкости в сепараторе 2. Жидкость опускается по не обогреваемой циркуляционной трубе 3, смешивается с исходным раствором, и цикл циркуляции повторяется снова. Вторичный пар, пройдя брызгоуловитель 4, удаляется с сверху сепаратора. Упаренный раствор отбирается через боковой штуцер в коническом днище ceпapaтоpa.

Скорость циркуляции в аппаратах с выносной нагревательной камерой может достигать 1,5 м/сек, что позволяет выпаривать в них концентрированные и кристаллизующиеся растворы, не опасаясь слишком быстрого загрязнения поверхности теплообмена. Благодаря универсальности, удоб­ству эксплуатации и хорошей теплопередаче аппараты такого типа получили широкое распространение.

В некоторых конструкциях выпарных аппаратов с выносной нагревательной камерой циркуляционная труба отсутствует. Такие аппараты аналогичны аппарату, приведенному на рис. 11, у которого удалена циркуляционная труба.

В этом случае выпаривание происходит за один проход раствора через нагревательную камеру, т.е. аппарат работает как прямоточный. Выпарные аппараты прямоточного типа не пригодны для выпаривания кристаллизующихся растворов.

Разновидностью выпарных аппаратов с выносной камерой показан на рис. 12.


В отличии от аппаратов с естественной циркуляцией, кипение раствора здесь происходит в горизонтальных трубах, присоединенных к корпусу 1 нагревательной камеры 2. В межтрубном пространстве камеры движется греющий пар. Вторичный пар удаляется сверху корпуса аппарата, пройдя брызгоуловитель 3, а упаренный раствор – через штуцер в нижней части конического днища корпуса аппарата. Если выпаривание проводится одновременно с кристаллизацией, то из конического днища удаляются кристаллы и аппарат соединяется со сборником или фильтром.

Условия кипения раствора в трубах неблагоприятны, так как в них образуются застойные зоны, снижающие интенсивность циркуляции и ухудшающие теплопередачу, а иногда приводящие к местной кристаллизации веществ.

Основным достоинством такого, аппарата, применяемого для выпаривания концентрированных, а также кристаллизирующихся растворов, является возможность лёгкого отсоединения нагревательной камеры, установленной на тележке, для чистки, ремонта или замены. Однако конструкция аппарата громоздка, очистка U-образных труб затруднена, а расход металла на поверхность нагрева – значителен. Для облегчения очистки U-образные трубы заменяют прямыми горизонтальными, развальцованными в трубных решётках.

Аппараты с вынесенной зоной кипения. При скоростях 0,25—1,5 м/сек с которыми движется раствор в аппаратах с естественной циркуляцией, не удается предотвратить отложения твердых осадков на поверхности теплообмена. Поэтому требуется периодическая остановка аппаратов для очистки, что связано со снижением их производительности и увеличением стоимости эксплуатации.

Загрязнение поверхности теплообмена при выпаривании кристаллизующихся растворов можно значительно уменьшить путем увеличения скорости циркуляции раствора и вынесением зоны его кипения за пределы нагревательной камеры.

В аппарате с вынесенной зоной кипения (рис. 13) выпариваемый раствор поступает снизу в нагревательную камеру 1 и, поднимаясь по трубам (длиной 4—7 м) вверх, вследствие гидростатического давления не закипает в них. При выходе из кипятильных труб раствор поступает в расширяющуюся кверху трубу вскипания 2, установленную над нагревательной камерой в нижней части сепаратора 3. Вследствие понижения давления в этой трубе раствор вскипает и таким образом, парообразование происходит за пределами поверхности нагрева.

Циркулирующий раствор опускается по наружной не обогреваемой трубе 4. Упаренный раствор отводится из кармана в нижней части сепаратора 3. Вторичный пар, пройдя отбойник 5 и брызгоуловитель 6, удаляется сверху аппарата. Исходный раствор поступает либо в нижнюю часть аппарата (под трубную решетку нагревательной камеры), либо сверху в циркуляционную трубу 4.

Вследствие большой поверхности испарения, которая создается в объеме кипящего раствора, и частичного самоиспарения капель, унесенных вторичным паром, значительно снижается брызгоунос. Кипящий раствор не соприкасается с поверхностью теплообмена, что уменьшает отложение накипи.

В виду значительного перепада температур (до~30°С) между греющим паром и раствором и малой потери напора в зоне кипения скорость циркуляции в этих аппаратах достигает 1,8—2 .м/сек.

Увеличение скорости приводит к увеличению производительности и интенсификации теплообмена. Коэффициенты теплопередачи в таких аппаратах достигают 3000 вт/(м2·град) [2580 ккал/( м2·ч·град)].

Аппараты с вынесенной зоной кипения могут эффективно применяться для выпаривания кристаллизующихся растворов умеренной вязкости.

Прямоточные (пленочные) аппараты. Принципиальное отличие этих аппаратов от аппаратов с естественной циркуляцией состоит в том, что выпаривание в них происходит при однократном прохождении выпариваемого раствора по трубам нагревательной камеры. Таким образом, выпаривание осуществляется без циркуляции раствора. Кроме того, раствор выпаривается, перемещаясь (на большей части высоты кипятильных труб) в виде тонкой пленки по внутренней поверхности труб. В центральной части труб вдоль их оси движется вторичный пар. Это приводи к резкому снижению температурных потерь, обусловленных гидростатической депрессией.

Различают прямоточные выпарные аппараты с поднимающейся и опускающейся пленкой.

Аппарат с поднимающейся пленкой (рис. 14) состоит из нагревательной камеры, представляющей собой пучок труб небольшого диаметра (15—25мм) длиной 7—9м, и сепаратора 2.

Раствор на выпаривание поступает снизу в трубы нагревательной камеры, межтрубное пространство которой обогревается греющим паром. На уровне, соответствующем обычно 20 – 25 % высоты труб, наступает интенсивное кипение. Пузырьки вторичного пара сливаются и пар, быстро поднимаясь по трубам, за счет поверхностного трения увлекает за собой раствор. При этом жидкость перемещается в виде пленки, всползающей по внутренней поверхности труб, и выпаривание происходит в тонком слое.

Вторичный пар, выходящий из труб, содержит капли жидкости, которые отделяются от пара с помощью отбойника 3 и центробежного брызгоуловитель 4. В брызгоуловитель влажный пар поступает тангенциально и ему сообщается вращательное движение. Под действием центробежной силы капли жидкости отбрасываются к периферии, жидкость стекает вниз, а пар удаляется сверху из аппарата.

Прямоточные выпарные аппараты ближе к аппаратам идеального вытеснения, в то время как аппараты с многократной циркуляцией приближаются к аппаратам идеального смешения. Вместе с тем в прямоточных аппаратах раствор проходит по кипятильным трубкам однократно. Поэтому время пребывания его мало и аккумулирующая способность этих аппаратов низка, что важно при выпаривании термически нестойких веществ.