Смекни!
smekni.com

Ультразвуковая размерная обработка материалов (стр. 17 из 20)

6. Основные результаты исследований ультразвуковых способов сверления отверстий

Для определения технических возможностей и выбора оптимальных условий и режимов реализации технологических процессов были проведены сравнительные исследования следующих вариантов ультразвуковых способов сверления (на примере обработки стекла):

1. Ультразвукового способа обработки стекла с применением абразивной суспензии - вращающимися рабочими инструментами в виде полых металлических трубок и без применения абразивной суспензии - алмазосодержащими рабочими инструментами в виде цилиндров, и определение технических возможностей созданного оборудования при сверлении хрупких листовых материалов различной толщины;

2. Ультразвукового способа обработки многослойных конструкций, выполненных из чередующихся слоев хрупкого и вязкого материалов вращающимися рабочими инструментами в виде полых металлический трубок с внешними цилиндрическими или конусными поверхностями и алмазосодержащим рабочим инструментом в виде цилиндра, и определение технических возможностей созданного оборудования при сверлении хрупких листовых материалов различной толщины.

6.1 Методика ультразвукового сверления, используемое оборудование и материалы

В состав экспериментальной установки для исследований процессов ультразвуковой обработки хрупких твердых материалов входят:

1. Малогабаритная ультразвуковая колебательная система и узел вращения ультразвуковой колебательной системы с токосъемником для передачи электрических колебаний на электроды вращающегося пьезоэлектрического преобразователя;

2. Ручная электрическая дрель модели BUR 102E фирмы Sparky, имеющая плавную регулировку скорости вращения от 0 до 3000 оборотов в минуту, для обеспечения вращения УЗ колебательной системы;

3. Перестраиваемый генератор электрических колебаний ультразвуковой частоты;

4. Различные рабочие инструменты, входящие в комплект экспериментальной установки:

o рабочий инструмент в виде полой металлической трубки, имеющей внешний диаметр 9 мм, а внутренний диаметр - 8 мм;

o рабочий инструмент в виде полой металлической трубки, имеющий внешний и внутренние диаметры 9 и 8 мм, соответственно, и паз вдоль цилиндрической поверхности глубиной 15 мм. Ширина паза 1 мм;

o рабочий инструмент в виде полой трубки с указанными выше параметрами и спиральной канавкой, выполненной на внешней поверхности металлической трубки;

o рабочий инструмент в виде полой металлической трубки, внешняя поверхность которой имеет форму обратного конуса, расширяющегося к торцевой рабочей поверхности с диаметра 7 мм до диаметра, равного 9 мм;

o рабочий инструмент в виде цилиндра диаметром 4 мм, длиной 6,2 мм, выполненный из алмазных зерен, связанных металлическим сплавом. Средний размер алмазных зерен составляет 70...100мкм. Процентное содержание алмаза (по объему) в материале инструмента не превышает 30%. Рабочий инструмент соединяется с ультразвуковой колебательной системой посредством металлического стержня диаметром 3 мм, длиной до 15 мм, припаиваемого к торцевой поверхности концентратора;

5. Абразивная суспензия, состоящая из 30% абразивного порошка (по объему) карбида кремния и 70 % воды. Средний размер зерен абразива равен 70 мкм;

6. Листы натриевого стекла стандартной различной толщины (3,4,5 мм) и многослойные композиции, состоящие из двух и трех слоев стекла толщиной 6 мм, соединенных полимерной эластичной связкой, толщиной 1 мм.
Проведение экспериментов на стекле обусловлено доступностью материала и тем, что параметры обработки всех других материалов нормируются относительно стекла (т.е., зная параметры обработки стекла по существующим тарировочным графикам легко определяются параметры обработки любых материалов).

Для получения сравнительных характеристик эффективности различных вариантов ультразвукового сверления (не вращающимися и вращающимися алмазосодержащими и трубчатыми металлическими инструментами) использовались специально подобранные рабочие инструменты, позволяющие обеспечить одинаковое ультразвуковое воздействие на обрабатываемый материал.

Сравнение рассматриваемых вариантов ультразвукового сверления является достаточно корректным, т.к. использовавшиеся в экспериментах рабочие инструменты имели одинаковую площадь обработки стекла и совершали ультразвуковые колебания на одной частоте с одинаковой амплитудой.

6.2 Ультразвуковое сверление листового материала

Целью проведенных исследований являлось установление функциональных возможностей ультразвуковой обработки стекла вращающимися рабочими инструментами в виде полых металлических трубок и алмазосодержащими рабочими инструментами в виде цилиндров и определение технических возможностей созданного оборудования при сверлении хрупких листовых материалов различной толщины.
Результаты, полученные вращающимся инструментом, сравнивались с параметрами ультразвуковой обработки не вращающимся инструментом.

В таблице 6.1 приведены результаты сверления листов стекла различной толщины при использовании рабочего инструмента в виде полой металлической трубки и абразивной суспензии.

Таблица 6.1 - Результаты ультразвукового сверления листов стекла различной толщины рабочим инструментом в виде металлической трубки с применением абразивной суспензии

Частота вращения, об/мин Производительность сверления листов стекла различной толщины, мм/мин Средняя производительность, мм/мин
3 мм 4 мм 5мм
0 3,2 3,0 2,8 3,0
300 4,9 3,3 3,0 3,7
1500 6,9 5,0 4,0 5,3
3000 7,5 6,2 5,4 6,4

Из анализа полученных результатов следует:

1. Скорость сверления стекла вращающимся рабочим инструментом в виде полой металлической трубки с применением абразивной суспензии растет с увеличением частоты вращения рабочего инструмента;

2. За счет придания вращения рабочему инструменту скорость сверления возрастает в 2...3 раза. Среднее значение скорости сверления возросло в 2,2 раза;

3. С увеличением глубины сверления производительность процесса падает.

Вторая серия экспериментов была посвящена исследованию процесса сверления стеклянных листов разной толщины содержащим алмаз рабочим инструментом.
Полученные результаты представлены в таблице 6.2.

Таблица 6.2 - Результаты ультразвукового сверления листов стекла различной толщины алмазосодержащим рабочим инструментом без применения абразивной суспензии

Частота вращения, об/мин Производительность сверления листов стекла различной толщины, мм/мин Средняя производительность, мм/мин Производительность сверления без УЗ, мм/мин
3 мм 4 мм 5 мм
0 0 0 0 0 0
300 3 2,7 2,5 2,7 0,1
1500 9 8 7,5 8,2 0,3
3000 12 12 12 12 0,5

Из анализа полученных результатов следует:

1. Скорость сверления стекла алмазосодержащим рабочим инструментом с водой без применения абразивной суспензии и без наложения УЗ колебаний растет с увеличением частоты вращения рабочего инструмента очень незначительно;

2. За счет придания вращения рабочему инструменту скорость сверления возрастает от 0 до 12 мм/мин, Среднее значение скорости сверления возрастает в 6 раз при увеличении частоты вращения от 300 до 3000 об/мин;

3. С увеличением глубины сверления производительность процесса падает на малых частотах вращения;

4. При частоте вращения рабочего инструмента 3000 об/мин скорость сверления не изменяется при увеличении глубины сверления.

Таким образом, сравнение полученных результатов позволяет сделать следующие выводы:

1. Производительность ультразвукового сверления рабочим инструментом в виде полой металлической трубки с применением абразивной суспензии на малых оборотах вращения превосходит производительность ультразвукового сверления алмазосодержащим инструментом;

2. Производительность ультразвукового сверления двумя анализируемыми способами сравнивается при частоте вращения, приблизительно равной 600 об/мин;

3. При высокой частоте вращения рабочего инструмента разница в производительности двух рассматриваемых способов растет, и скорость сверления алмазосодержащим инструментом превышает в два раза скорость сверления инструментом в виде полой металлической трубки с применением абразивной суспензии.

Следовательно, при выполнении отверстий в хрупких листовых материалах ультразвуковое алмазное сверление является более предпочтительным при обеспечении высокой скорости вращения рабочего инструмента.

6.3 Ультразвуковое сверление многослойных конструкций, состоящих их слоев хрупкого и полимерного пластичного материалов

Целью исследований являлось установление функциональных возможностей ультразвуковой обработки многослойных конструкций, выполненных из чередующихся слоев хрупкого и вязкого материалов (каковыми могут быть бронестекла, многослойные фольгированные текстолиты, многослойные звукоизолирующие плиты и т.п.). Выполнение отверстий осуществлялось вращающимися рабочими инструментами в виде полых металлических трубок с внешней цилиндрической или конусной поверхностями и алмазосодержащими рабочими инструментами в виде цилиндров.

Следует сразу отметить, что применение рассмотренных выше рабочих инструментов в виде полых металлических трубок не обеспечило сверление многослойных конструкций, так как после просверливания первого слоя хрупкого материала инструмент начинал скользить по слою вязкого полимерного материала, практически не углубляясь и не прорезая его. Поэтому, для сверления многослойных конструкций из стеклянных листов, соединенных слоем нетвердеющего полимерного материала использовались трубчатые рабочие инструменты с пазом, выполненным вдоль диаметра рабочего инструмента. Наличие паза обеспечивало быстрое разрезание полимерного слоя и возможность ультразвукового сверления многослойных конструкций.
Результаты, полученные при выполнении отверстий вращающимися инструментами в виде цилиндрической и конусной полых металлических трубок с продольным пазом, сравнивались с параметрами ультразвуковой обработки вращающимися алмазосодержащими инструментами.