Смекни!
smekni.com

ГРЭС 1500 Мвт (стр. 7 из 11)

Dу.тр= aÖ4´658,7/3,14´20=6,4 м

Определяем минимальную высоту дымовой трубы.


Н=Ö А´ МSO2+ПДКso2/ПДКNO2´MNO2 Öz/VтрDt

ПДК so2

Где А – коэффициент зависящий от метреологических условий местности, 200;

ПДКso2 – 0,5; ПДКNO2 0,085 мг/м³

z - число дымовых труб 1,

Dt разность температуры выбрасываемых газов и средней температуры самого жаркого месяца в подень » 110°с;

Н=Ö 200´ 3968,8 +0,5 /0,085 ´1399 Ö1/ 658,7 ´110

0,5

Н= 342 м

Высота устанавливаемой трубы 342 м.

14.Выбор системы золоулавливавния и золоудаления.

Примеси, заключающиеся в дымовых газах, загрязняя атмосферный воздух, оказывают при определенных концентрациях весьма вредное влияние на человеческий организм и растительный мир, а также увеличивают износ механизмов, интенсифицируют процессы коррозии металлов, разрушающе действуют на строительные конструкции зданий и сооружений. Для снижения количества выбросов золы в атмосферу, на проектируемой ГРЭС устанавливаются комбинированные золоуловители.

Комбинированные золоуловители

При сжигании многозольных видов топлива на электростанциях большой мощности устанавливают двухступенчатую очистку дымовых газов от золы, комбинируя батарейные циклоны и электрофильтры,а также мокрые золоуловители и электрофильтры.

Суммарную степень очистки газов в двухступенчатом золоуловителе определяют по формуле

= h'+ h`` (1 – h'),

где h' и h`` – соответственно степень очистки газов в 1-й и 2-й ступенях.

Для блока 500 МВт, работающего на многозольном экибастузском угле, зола которого имеет высокое удельное электрическое сопротивление установка состоит из мокрого золоуловителя с трубой Вентури и четырехпольного электрофильтра. В первой ступени улавливалось 90% золы, содержащейся в дымовых газах, а также происходили их увлажнение и охлаждение до 75 – 80'С. Это способствовало снижению удельного электрического, сопротивления слоя золы и уменьшало вероятность образования обратной короны в электрофильтре. Общая степень очистки дымовых газов на этой установке составила 99,0 – 99,5%.

Стоимость таких высокоэффективных золоуловителей достигает около 7% общих затрат на сооружение электростанции.

Золоудаление

Система удаления и складирования золы и шлака современных крупных электрических станций, называемая золоудалением, представляет собой сложный комплекс, включающий специальное оборудование и устройства, а также многочисленные инженерные сооружения. Ее назначением является удаление шлака, образующегося в топках, и золы, уловленной золоуловителями парогенераторов, транспорт их за пределы территории электростанции, часто на значительное расстояние (до 10 км и больше), и организация их складирования на золошлакоотвалах.

На проектируемой станции осуществлено гидравлическое золошлакоудаление.

Наиболее универсальной и экономичной является система гидрозолоудаления с багерными насосами, транспортирующими совместно золовую и шлаковую пульпу. В настоящее время для мощных электростанций осуществляют, как правило, эту систему гидрозолоудаления.

На рисунке показана общая схема совместного гидравлического удаления золы и шлака багерными насосами. Образующийся в топке парогенератора шлак поступает в шлакоудаляющее устройство 1, из которого удаляется в самотечный канал 2 системы гидрозолоудаления, в него подается также смывными устройствами 3 из бункеров 4 летучая зола, уловленная в золоуловителе. Из канала гидрозолошлаковая смесь (пульпа) поступает к багерным насосам 5, которые по стальным трубопроводам 6 перекачивают ее на золошлакоотвал. Перед поступлением к багерному насосу пульпа проходит через центральную дробилку 7 (если отсутствуют дробилки у шлакоудаляющих устройств под парогенераторами), где происходит измельчение шлака до кусков размером не более 25 – 30 мм, а затем через металлоуловитель 8. Осветленная вода поступает из отвала в отстойный бассейн, если осуществлена замкнутая (оборотная схема), либо в ближайший водоем, если водоснабжение системы гидрозолоудаления выполнено по разомкнутой (.прямой) схеме.

.

Для удаления шлака из топок парогенераторов большой паропроизводительности, образующегося в твердом состоянии, служат механизированные устройства непрерывного действия со шнековым транспортером (БКЗ и ЗиО).

Шнековые транспортеры (рис. ) имеют ванну с наклонным лоткообразным дном. Производительность этих транспортеров 4 – 8 т/ч. Диаметр шнека 500 – 600 мм, длина 5 – 8 м, угол наклона 15° – 25° . Как правило, за шнеком, под шлаковой течкой располагают дробилки.

рис ( )

1бункер холодной воронки; 2 ванна; 3 кольцо для дробления шлака; 4 шнек; 5 привод шнека; 6 шлаковая течка; 7 люк; 8 опорная конструкция; 9 втулка; 10 подшипник;

Шлаковые и золовые каналы в пределах котельного цеха выполняют раздельными. Типовыми являются железобетонные каналы, облицованные плитами из литого базальта, со съемными металлическими перекрытиями на уровне пола, который выполняют с уклоном не менее 1° в сторону каналов гидрозолоудаления.

Насосы подающие шлакозолвую пульпу называют багенными. В качестве багерных насосов используют центробежные насосы . Обычно используют грунтовые насосы, которые располагают так, чтобы их всасывающий патрубок всегда находился под заливом.

(л1; стр. 347 – 353)

15. Выбор схемы водоподготовки.

Обычно исходная вода подвергается специальной обработке для улучшения ее качества. Установки, на которых производится такая обработка, называется водоподготовительными, а вода, полученная в результате обработки, – химически обработанной. Вода, поступающая в. котельные агрегаты, называется питательной, а находящаяся в них – котловой (или испаряемой) водой.

Конденсатными насосами первой ступени турбинный конденсат подается на блочную обессоливающую установку (БОУ) , где происходит его очистка от суспендированных и ионизированных загрязнений. После БОУ конденсатными насосами второй ступени конденсат направляется через подогреватели низкого давления (ПНД) в деаэратор , куда поступает также и конденсат греющего пара подогревателей высокого давления (ПВД).

Так как в деаэратор направляется не только турбинный конденсат, но и другие потоки, то выходящая из деаэратора смесь называется уже питательной (а так же деаэрированной) водой. Подогретая паром до 428 К хорошо дегазированная (т. е. освобожденная от растворенных газов О2, СО2, N2) питательная вода из деаэратора поступает в бустерные насосы 15, подающие ее на всас питательных насосов . Последние через ПВД направляют ее в котельный агрегат, где и замыкают описанный здесь контур энергоблока.

В этом замкнутом цикле имеются потери конденсата, значения для которых для энергоблоков с давлением 24 МПа находится в пределах 1-2% паропроизводительности котла. Эти потери восполняются обессоленной водой подготовленной на специальной водоподготовительной установке (ВПУ).

У каждой турбины электростанции с прямоточными парогенераторами предусматривается установка для обезжелезивания и глубокого обессоливания 100% конденсата, выходящего из конденсаторов.

Блочная обессоливающая установка предназначена для очистки полного расхода основного конденсата и работает по схеме: обезжелезивание на намывных целлюлозных фильтрах, обессоливание на фильтрах смешанного действия с выносной регенерацией ионитов. Производительность установки – 1600 м~/ч.

В состав БОУ входят четыре целлюлозных фильтра Æ2000 мм производительностью 500 м³/ч каждый, три фильтра смешанного действия Æ3400 мм производительностью 900 м³/ч каждый с выносной регенерацией.

Дистиллят испарителей электростанций с прямоточными парогенераторами обессоливается в конденсатоочистках турбин.

Внутренние поверхности баков деаэрированной воды, запаса и сбора конденсата должны иметь защитные покрытия.

На ТЭС блочной структуры общий дополнительный запас обессоленной воды в баках без давления, устанавливаемых вне зданий, принимается на 40-минутный расход воды при максимальной нагрузке, но :не менее 6000 м³.

Для каждого энергоблока устанавливают один дренажный бак емкостью 15 м³ с двумя насосами.

На электростанциях предусматриваются аппаратура, насосы, трубопроводы и т. и. для предпусковых и эксплуатационных водно-химических промывок, а также устройства для предупреждения стояночной коррозии парогенераторов, турбин и прочего оборудования и трубопроводов.

16. Перечень средств автоматизации и технологической защиты турбины

Автоматическая система защиты (АСЗ) – электрогидравлическая, с электрическими измерителями и гидравлической исполнительной частью. Только защита по превышению частоты вращения, (автомат безопасности) выполнена механогидравлической. Надежность и быстродействие АСЗ достигаются дублированием элементов, исключением золотниковых. пар, введением положительных обратных связей, периодическими проверками на остановленной и работающей турбине.

ПРИНЦИПИАЛЬНАЯ СХЕМА АСЗ.

НАЗНАЧЕНИЕ И ВЗАИМОДЕЙСТВИЕ ЭЛЕМЕНТОВ

На обеих модификациях турбины АСЗ выполнена беззолотниковой, с положительной обратной связью во всех ступенях усиления. На турбинах К-500-240-2 эта система проектная, на К-500-240 – установлена взамен золотниковой при модернизации.