Смекни!
smekni.com

Многомерные задачи оптимизации (стр. 4 из 6)

Аналогично проводится спуск по координатам

, а затем процедура снова повторяется от
до
. В результате этого процесса получается последовательность точек
, в которых значения целевой функции составляют монотонно убывающую последовательность

На любом k-том шаге этот процесс можно прервать. И значение функции в точке kпринимается в качестве наименьшего значения целевой функции в рассматриваемой области.

Метод покоординатного спуска сводит задачу о нахождении наименьшего значения функции многих переменных к многократному.

3.3 Метод градиентного спуска.

В природе мы нередко наблюдаем явления, сходные с решением задачи на нахождение минимума. К ним относится, в частности, стекание воды с берега котлована на дно. Упростим ситуацию, считая, что берега котлована унимодальные, т. е. они гладкие, а не содержат локальных углублений или выступов. Тогда вода устремится вниз в направлении наибольшей крутизны берега в каждой точке.

Переходя на математический язык, заключаем, что направление наискорейшего спуска соответствует направлению наибольшего убывания функции. Из курса математики известно, что направление наибольшего возрастания функции двух переменных

характеризуется ее градиентом

Где

единичные векторы (орты) в направлении координатных осей. Следовательно, направление, противоположное градиентному, укажет направление наибольшего убывания функции. Методы, основанные на выборе пути оптимизации с помощью градиента, называются градиентными. Идея метода градиентного спуска состоит в следующем. Выбираем некоторую начальную точку
, и вычисляем в ней градиент рассматриваемой функции. Делаем шаг в направлении, обратном градиентному:

В результате приходим в точку

, значение функции в которой обычно меньше первоначального
. Если это условие не выполнено, т. е.значение функции не изменилось либо даже возросло, то нужно уменьшить шаг
. В новой точке процедуру повторяем: вычисляем градиент и снова делаем шаг в обратном к нему направлении:

Процесс продолжается до получения наименьшего значения целевой функции. Строго говоря, момент окончания поиска наступит тогда, когда движение из полученной точки с любым шагом приводит к возрастанию значения целевой функции. Если минимум функции достигается внутри рассматриваемой области, то в этой точке градиент равен нулю, что также может служить сигналом об окончании процесса оптимизации. Приближенно момент окончания поиска можно определить аналогично тому, как это делается в других итерационных методах.

Формулы для частных производных можно получить в явном виде лишь в том случае, когда целевая функция задана аналитически. В противном случае эти производные вычисляются с помощью численного дифференцирования:

При использовании градиентного спуска в задачах оптимизации основной объем вычислений приходится обычно па вычисление градиента целевой функций в каждой точке траектории спуска. Поэтому целесообразно уменьшить количество таких точек без ущерба для самого решения. Это достигается в некоторых методах, являющихся модификациями градиентного спуска. Одним из них является метод наискорейшего спуска. Согласно этому методу, после определения в начальной точке направления, противоположного градиенту целевой функция, решают одномерную задачу оптимизации, минимизируя функцию вдоль этого направления. А именно, минимизируется функция

Для минимизации

можно использовать один из методов одномерной оптимизации. Можно и просто двигаться в направлении, противоположном градиенту, делая при этом не один шаг, а несколько шагов до тех пор, пока целевая функция не перестанет убывать. В найденной новой точке снова определяют направление спуска (с помощью градиента) и ищут новую точку минимума целевой функции и т. д. В этом методе спуск происходит гораздо более крупными шагами, и градиент функции вычисляется в меньшем числе точек.

Заметим, что сведение многомерной задачи оптимизации к последовательности одномерных задач на каждом шаге оптимизации рассмотрено в п.3.2 для метода покоординатного спуска. Разница состоит в том, что здесь направление одномерной оптимизации определяется градиентом целевой функции, тогда как покоординатный спуск проводится на каждом шаге вдоль одного из координатных направлений.

4. Задачи с ограничениями

4.1 Линейное Программирование.

До сих пор при рассмотрении задач оптимизации мы не делали никаких предположений о характере целевой функции и виде ограничений. Важным разделом математического программирования является линейное программирование, изучающее задачи оптимизации, в которых, целевая функция является линейной функцией проектных параметров, а ограничения задаются в виде линейных уравнений и неравенств.

Стандартная (каноническая) постановка задачи линейного программирования формулируется следующим образом: найти значения переменных, которые

1) удовлетворяют системе линейных уравнений

(4.1)

2) являются неотрицательными, т. е.

(4.2)

3) обеспечивают наименьшее значение линейной целевой функции

(4.3)

Всякое решение системы уравнений (4.1), удовлетворяющее системе неравенств (4.2), называется допустимым решением. Допустимое решение, которое минимизирует целевую функцию (4.3), называется оптимальным решением.

4.2 Геометрический метод.

Областью решения линейного неравенства с двумя переменными

(4.4)

является полуплоскость. Для того чтобы определить, какая из двух полуплоскостей соответствует этому неравенству, нужно привести его к виду

или
. Тогда искомая полуплоскость в первом случае расположена выше прямой
, во втором - ниже нее. Если
, то неравенство (4.4) имеет вид
; в этом случае получим либо
- правую полуплоскость, либо
- левую полуплоскость.

Областью решений системы является пересечение конечного числа полуплоскостей, описываемых каждым отдельным неравенством вида (4.4). Это пересечение представляет собой многоугольную область

. Она может быть как ограниченной, так и неограниченной и даже пустой.

Область решений

обладает важным свойством выпуклости. Область называется выпуклой, если произвольные две ее точки можно соединить отрезком, целиком принадлежащим данной области.

Опорной прямой называется прямая, которая имеет с областью по крайней мере одну общую точку, при этом вся область расположена но одну сторону от этой прямой.

Аналогично можно дать геометрическую интерпретацию системы неравенств с тремя переменными. В этом случае каждое неравенство описывает полупространство, а вся система — пересечение полупространств, т. е. многогранник, который также обладает свойством выпуклости. Здесь опорная плоскость проходит через вершину, ребро или грань многогранной области.