Смекни!
smekni.com

Германієвий дрейфовий транзистор (стр. 3 из 4)

2.2 Вплив режимів роботи на параметри транзисторів

Залежність h21Б від струму емітера. При розгляді цієї залежності (мал. 2,а) відзначимо, що на початковій ділянці концентрація інжектованих емітером носіїв мала і велика частина їх рекомбінує в області емітерного перехіду. Відповідно ефективність емітера g невелика, мале і h21Б. Це характерно для кремнієвих транзисторів, де внаслідок малого значення niструми генерації-рекомбінації істотні. З ростом струму емітера інжекційний струм ( ~ ехр qU/kТ), росте швидше рекомбінаційного ( ~ ехр qU/kТ) і g збільшується.

З подальшим збільшенням струму емітера відбувається ріст h21Б з наступної причини. При інжекції дірок у базу транзистора для збереження электронейтральності через електрод бази входить така ж кількість електронів. Розподіл електронів повторює розподіл дірок (див. мал. 1,в) так само, як у базі діода. Нерівноважні електрони не можуть дифундувати під дією градієнта концентрації від емітера до колектора, тому що з емітера немає припливу електронів і порушиться электронейтральність бази поблизу емітера.

Внаслідок рівності нулю струму електронів існує електричне поле, що перешкоджає дифузії електронів. Електричне поле в базі прискорює рух дірок до колектора. З цієї причини ефективний коефіцієнт дифузії дірок при високих рівнях інжекції подвоюється

.

Таким чином, зі збільшенням Iэ швидкість дифузії дірок через базу росте, що приводить до зменшення об'ємної і поверхневої рекомбінації, а, відповідно, до збільшення коефіцієнта переносу (2.13) і росту h21Б.

При більш високих струмах емітера виникають протидіючі явища. По-перше, збільшення концентрації електронів у базі ( що входять для компенсації заряду дірок) приводить до росту інжекційного струму електронів з бази в емітер, тобто до зменшення ефективності емітера. По-друге, з ростом концентрації інжектованих дірок може зменшуватися їхній час життя, що приводить до зменшення коефіцієнта переносу (ця причина не визначальна, так як t може і збільшуватися).

Рис. 2. Залежність h21Б від струму емітера (а) і напруги на,колекторі (б) і зміна концентрації носіїв у базі при зміні Uк (Iэ = const) (в)

Унаслідок цих причин залежність h21Б (Iэ) (мал. 2,а) має максимум. Ріст h21Б на початковій ділянці пояснюється збільшенням g за рахунок більш швидкого зростання інжекційного струму емітера в порівнянні з рекомбінаційним. Подальший ріст h21Б обумовлений збільшенням коефіцієнта переносу b за рахунок збільшення коефіцієнта дифузії. Причиною наступного зменшення h21Б є зменшення g (ріст електронної складової Iэ).

Вплив колекторної напруги на роботу транзистора. Оскільки колекторний n-p- перехід включений у зворотному напрямку, то з ростом Uк відбувається розширення області об'ємного заряду переходу. Як відзначалося вище, для одержання g»1 необхідно брати матеріал бази з малою концентрацією основних носіїв. Тому розширення колекторного n-p- переходу відбувається в область бази і ширина бази зменшується. Згідно (2.13) це приводить до росту h21Б з збільшенням Uк.

Ефект зміни ширини бази під дією Uk має не тільки позитивне (ріст h21Б), але і негативне значення. Якщо, наприклад, транзистор працює в режимі постійного струму емітера (IЭ=const), то при зміні ширини бази під дією Uкградієнт концентрації інжектованих носіїв повинен залишатися постійним, тому що Iэр (2.7). Тому зменшення W приводить до зменшення концентрації інжектованих носіїв на границі база — емітер (мал. 2,в, U’’k>U’k), а це еквівалентно зменшенню напруги на емітерному n-p- переході (2.12). Таким чином, має місце зворотний зв'язок між напругою на колекторі і напругою на емітері, а саме збільшення напруги на колекторі приводить до зменшення напруги на емітерному n-p- переході.

Отже, можна відзначити два небажаних ефекти, що з'являються при великих Iэ і Uk: зменшення g з ростом Iэ і наявність зворотного зв'язку між Ukі вхідним сигналом. Причиною обох ефектів є мала концентрація основних носіїв у базі, яку не можна збільшувати, тому що при цьому зменшиться g.

Обидва ці ефекти можуть бути усунуті в конструкції транзистора з гетеропереходом у якості емітера. Один з варіантів енергетичної діаграми такої структури показаний на мал. 3. Тому що в якості емітера використовується матеріал з більшою шириною забороненої зони, чим матеріал бази, потенціальний бар'єр для дірок значно більший, ніж для електронів. Це дозволяє здійснювати практично однобічну інжекцію електронів у базу при будь-яких струмах емітера. Отже, g при великих Iэ не зменшується.

Рис. 3. Енергетична діаграма п-р-п-транзистора з гетеропереходом при робочих зсувах

Якщо в звичайному транзисторі для одержання g»1 необхідно область емітера легувати домішкою значно сильніше, ніж область бази, то в транзисторі з гетероемітером можна одержати g»1 і при зворотному співвідношенні. Тому область бази в такому транзисторі може бути легована значно сильніше, ніж область емітера і колектора. З ростом напруги на колекторі область об'ємного заряду розширюється в слаболеговану область, тобто в даному випадку в область колектора. Отже, ширина бази не змінюється при зміні Uк і зворотний зв'язок між входом і виходом відсутній. Якщо розрив енергії в зоні провідності більше ширини забороненої зони напівпровідника бази, то інжектовані в базу електрони можуть віддавати надлишкову енергію електронам валентної зони і переводити їх у зону провідності (Рис. 3.), тобто відбувається множення числа інжектованих носіїв. У цьому випадку коефіцієнт передачі струму h21э може бути більше одиниці, в чому ще одна перевага транзистора з гетеропереходом у якості емітера [7].

Перші зразки діючих транзисторів з гетероемітером вже отримані, і викладені вище розуміння в загальному перевірені. Однак на шляху їхнього впровадження у виробництво стоять значні технологічні труднощі. Основною проблемою є створення бездефектної границі розділу в гетеропереході, тому що на дефектах відбувається значна рекомбінація інжектованих носіїв і g зменшується.

2.3 Представлення транзистора у вигляді чотириполюсника

При розрахунку електронних ланцюгів транзистор можна представити у вигляді чотириполюсника (рис. 4), що дозволяє використовувати для цих цілей добре розроблені методи теорії ланцюгів.


Рис. 4. Схема чотириполюсника для опису електричних властивостей транзистора

Як відомо, чотириполюсник характеризується вхідними U1, I1 і вихідними U2, I2 напругами і струмами. Якщо відомі дві з цих величин, то дві інші однозначно знаходяться на основі статичних характеристик транзистора. У загальному вигляді зв'язок струмів з напругами в чотириполюс­нику описуються шістьма рівняннями, з яких три набули широкого засто­сування. У першому з них напруги розглядаються як лінійні функції стру­мів:

Параметри Zikмають розмірність опорів і є комплексними величина­ми. Вони виражаються через струми і напруги в режимі холостого ходу в такий спосіб:

(2.15)

При розгляді струмів транзистора як лінійних функцій напруг одержу­ємо Y - систему рівнянь:

(2.16)

Параметри Y мають розмірність провідності, також е комплексними величинами. Вони визначаються при короткозамкнутому за змінним сиг­налом вході чи виході:

(2.17)

Недолік системи Z і Y - параметрів - складність їхнього експеримен­тального визначення, тому що внаслідок малого вхідного опору транзисто­ра важко створити режим короткого замикання на вході і внаслідок вели­кого вихідного опору важко створити режим холостого ходу на виході. Ці недоліки можна усунути при використанні гібридної системи h - парамет­рів: