Смекни!
smekni.com

Расчет и оптимизация режимов резания (стр. 3 из 3)

Важнейшими свойствами этого абразивного материала являются высокие твердость (тверже его только алмаз, эльбор и карбид бора) и абразивная способность, которая объясняется тем, что его зерна имеют острые режущие грани. Под абразивной способностью понимают способность абразивных зерен обрабатывать тот или иной материал. Карбид кремния очень теплостоек; он способен выдерживать температуру до 20500 С.

Карбид бора (КБ) представляет собой химическое соединение

B4C, он обладает высокими абразивной способностью, износостойкостью и химической стойкостью.

Кубический нитрид бора (КНБ) – сверхтвердый материал, впервые получен в 1957г. и содержит 43.6% бора 56.4% азота. (КНБ) – второй по твердости после алмаза материал. Его твердость в 2,5 раза выше чем у электрокорунда. По сравнению с традиционными абразивами, такими как карбид кремния и электрокорунд, КНБ обладает значительно более высокими абразивными свойствами, что связано с остротой его кромок (рис. 18). Он не утрачивает своих режущих свойств при высоких температурах (до 1300°С) и химическом воздействии СОЖ.

Несмотря на несколько меньшую твердость, кубический нитрид бора обладает почти теми же абразивными свойствами, что и алмаз, но превосходит по износостойкости все известные абразивные материалы, применяемые в технике. Кубический нитрид бора выгодно отличается от алмаза своей высокой теплостойкостью. Он не теряет своих режущих свойств даже при температуре 12000 С; шлифовальные круги из него отличаются высокой стойкостью. Их применение повышает точность и качество детали, резко сокращает время на правку.

Абразивные материалы из кубического нитрида бора в СССР выпускают в виде шлифпорошков – эльбор (Л) и кубонит (КО) – и микропорошков (КМ).

Зернистость абразивного материала приведена ниже.

Шлифзерно – 200, 160, 125, 100, 80, 63, 50, 40, 32,

25, 20, 16

Шлифпорошки - 12, 10, 8, 6, 5, 4

Микропорошки - М63, М50, М40, М28, М20, М14, М10, М7, М5.

Одним из эффективных методов повышения износостойкости и производительности инструмента из сверхтвердых материалов является металлизация сверхтвердых материалов, целесообразность которой доказана отечественной и зарубежной практикой. Заключая алмазные зерна в металлическую оболочку и заполняя микротрещины, покрытие увеличивает прочность, что приводит к повышению стойкости инструмента. Прочность алмазных зерен, покрытых никелем, вырастает на 22%.

Степень металлизации зерен варьируется от 40% до 100% в зависимости от условий работы круга и вида операции шлифования. Степень металлизации 100% соответствует тому, что масса нанесённого на единичное зерно алмаза или КНБ никеля равна массе этого зерна.

Из сверхтвердых материалов (суперабразивов) в основном изготавливают шлифовальные круги с концентрацией алмаза или КНБ, равной 75% что соответствует их содержанию в алмазоносном слое (3,3 карат/ см3) или 100% (4,4 карат/ см3).

Рис. 18. Абразивные зерна КБН (а), электрокорунда (б) и карбида кремния (в)

1.5. Приспособление и оснастка.

Приспособления для шлифовальных станков по общей классификации оснастки относятся к седьмой группе, обозначаясь первой цифрой в восьмизначном обозначении различных приспособлений. Для круглошлифовальных и внутришлифовальных станков это могут быть различные центры, патроны, оправки и всевозможные поводковые устройства, служащие для установки вращающихся деталей. В категории приспособлений для плоскошлифовальных станков наиболее распространены магнитные и электромагнитные столы, специальные тиски и разнообразные синусные приспособления, предназначенные для закрепления обрабатываемой детали под нужным углом. Делительные головки, если не являются составной частью плоскошлифовального или заточного станка, также являются дополнительным приспособлением. Делительные головки могут быть различной конструкции: с делительным диском, оптические, червячные, синусные. Они применяются при шлифовании спиралей, многозаходных резьб, шлицев, зубьев зубчатых колес, и прочих деталей, где требуется поворот заготовки на доли оборота или перемещение по окружности на разной длины отрезки.

Автономная система отбора абразивной пыли: Пылесос В.19-101 представляет собой систему забора абразивной пыли для заточных и точильно-шлифовальных станков устанавливаемую при отсутствии централизованной системы вентиляции.

Механизмы для правки шлифовального круга.

Приспособление для балансировки шлифовальных кругов.

Глава 2. Расчет режимов резания.

Задача.

На круглошлифовальном станке мод. 3M131 шлифуется участок вала диаметром d и длиной l. Припуск на обработку h, длина вала l1. Способ крепления заготовки – в центрах. Материал заготовки: Сталь 40 закаленная (HRC 34...36). Вид обработки: чистовая с продольной подачей напроход.

D=100мм, L=170мм, L1=300мм, H=0,18мм, Ra=0,63.

Схема обработки.

Технические данные станка 3М131:

Наибольший диаметр шлифуемой поверхности 280мм, длина 700мм.

Nд=7,5 кВт;

=0,8; n (об/мин): 1112 и 1285.
з
=40-400 об/мин (регулируется бесступенчато). Максимальные размеры круга: Dк=600мм, Вк=63мм.

Решение:

1. Выбор инструмента для шлифования:

ПП24А40НС15К5А35 - маркировка круга.

ПП - Наибольшее применение находят плоские круги прямого профиля (ПП). Их применяют для круглого наружного и внутреннего шлифования, плоского шлифования периферией круга, заточке инструмента и ручного обдирочного шлифования.

24А - марка абразивного материала (белый электрокорунд).

40–зернистость(шлифпорошки), размер зерна основной фракции 500-400мкм.

Н – процентное содержание основной фракции.

С1 - степень твердости (средний).

5 - номер структуры (закрытая).

К5 - вид связки (керамическая).

А - класс круга.

35 - окружная скорость(35 мс), при которой обеспечивается безопасная работа.

2. Режимы резания:

2.1. Выбираем частоту вращения круга.

. По паспорту

2.2. Выбираем частоту вращения заготовки.

(по табл. от 15 до 55).

, т.к. бесступенчато принимаем
.

2.3. Выбор продольной подачи:

При

, =>
(от 0,005 до 0,015).

. В нашем случае коэффициент выбираем 0,25.

2.4. Находим скорость продольного хода стола:

2.5. Выполняем расчет мощности с продольной подачей:

, т.к.
(4,11кВт<7,5кВт), то режим реализуем.

2.6. Находим время обработки:

,
.

,
,
.

.

.

Заключение.

Шлифование является одной из ключевых технологий современного машиностроительного производства, которая, благодаря новым разработкам в области создания абразивных материалов и инструментов, а также новейшего технологического оборудования оснащенного многокоординатными устройствами ЧПУ, в последние годы получило качественное развитие. Роль процессов шлифования значительно увеличивается с появлением новых материалов, в частности конструкционных керамик и керамокомпозитов, получение точных деталей из которых без шлифования проблематично.

Список используемой литературы.

1)Лоскутов В.В. Шлифовальные станки (М. Машиностроение 1988).

2)Лоскутов В.В. Шлифование металлов Учебник (М. Машиностроение 1985).

3)Якимов А.В., Паршаков А.Н., Свирщев В.И., Ларшин В.П. Управление процессом шлифования (К. Техника 1990)