Смекни!
smekni.com

Оценка термодинамического совершенства цикла Брайтона с регенерацией тепла. Расчёт теплообменн (стр. 1 из 3)

ДЕПАРТАМЕНТ ПО АВИАЦИИ

МИНИСТЕРСТВА ТРАНСПОРТА И КОММУНИКАЦИЙ

Курсовая работа

По дисциплине «Термодинамика и теплопередача»

Тема «оценка термодинамического совершенства цикла Брайтона с регенерацией тепла. Расчёт теплообменного аппарата»

Выполнил: Студент гр.

Принял: Преподаватель

1.Цель и задачи курсовой работы.

Цель курсовой работы – закрепить теоретические знания, полученные при изучении курса и научиться самостоятельно рассчитывать и анализировать термодинамические процессы в элементах двигателей и системах летательных аппаратов; производить анализ идеальных циклов авиационных двигателей;

2.Содержание и объем работы.

Работа содержит расчеты и анализы термодинамических процессов в элементах двигателей и системах л/а; анализ идеальных циклов авиационных двигателей; одновременные расчёты газовых потоков в элементах двигателей;

Введение

Техническая термодинамика является частью термодинамики – раздел теоретической физики. Объектом исследований технической термодинамики являются авиационные двигатели – тепловые машины, в которых изучаются закономерности взаимного превращения теплоты в работу, устанавливается взаимосвязь между тепловыми, механическими и химическими процессами, имеющими место в тепловых машинах. В качестве рабочего тела в авиационных двигателях используют воздух атмосферы Земли.

К параметрам состояния (свойствам рабочего тела) относят давление, температуру, удельный объём (или плотность) и др.

Исследование любой тепловой машины начинается с исследования ее идеального цикла. При этом переход от реальных циклов к идеальным производится при следующих допущениях:

1. Все процессы, образующие цикл, считаются обратимыми.

2. Рабочее тело идеализируется – химический состав его принимается неизменным во всех процессах цикла. Для циклов, в которых рабочим телом является газ, последний считается идеальным с неизменными физическими свойствами.

3. Цикл считается замкнутым, т.е. процессы смены рабочего тела не рассматриваются, а заменяются условным политропным процессом отвода теплоты q2.

4. Процесс горения топлива заменяется условным политропным процессом подвода теплоты q1.

Особенности цикла Брайтона.

а) рабочее тело – поток воздуха (открытая термодинамическая система);

б) сжатие производится в компрессоре – лопаточной машине, в которой механическая работа, подводимая к ротору компрессора, преобразуется в энергию давления. Поэтому степень повышения давления или степень сжатия ограничивается напорностью лопаточных аппаратов;

в) температура газа в точке «3» ограничивается из-за прочности турбины – лопаточной машины, в которой происходит преобразование тепловой энергии рабочего тела в механическую работу на валу;

г) давление в точке «4» равно давлению в точке «1», то есть выхлопные газы имеют только более высокую температуру по сравнению с атмосферным воздухом.

Регенерация теплоты является одним из средств повышения термодинамического КПД цикла. Основное отличие газотурбинного двигателя, работающего по циклу Брайтона с регенерацией теплоты, от обычных ТВД состоит в том, что он имеет теплообменный аппарат, через который протекают холодный воздух, сжатый в компрессоре, и горячие газы, выходящие из турбины. Вследствие обмена теплотой между ними происходит подогрев воздуха перед его поступлением в камеру сгорания и охлаждение горячих газов.

Под регенерацией тепла понимают использование с помощью специального теплообменника части тепла , уходящего из двигателя в атмосферу, для предварительного подогрева сжатого воздуха, поступающего в камеру сгорания из компрессора.

Регенерация тепла снижает количества внешней теплоты, подводимой к потоку в термодинамическом цикле и, следовательно, повышает экономичность двигателя.

Возможность использования регенерации тепла в авиационных двигателях невелика. В авиации стараются сделать летательный аппарат как можно легче, следовательно, специальный теплообменник, применяемый в данном процессе, из-за своих внушительных размеров противоречит этому.


Группа М 209

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине «Термодинамика и теплопередача»

Содержание пояснительной записки.

В первой части курсовой работы определение:

- параметров состояния рабочего тела в контрольных точках цикла Брайтона с регенерацией тепла;

- энергетических показателей термодинамических процессов, составляющих цикл Брайтона с регенерацией тепла;

- экономии топлива при использовании регенерации тепла в авиационных двигателях;

- возможность использования регенерации тепла в авиационных двигателях;

- термодинамического совершенства цикла Брайтона с регенерацией тепла по отношению к базовому циклу – циклу Карно.

Во второй части курсовой работы определение:

- коэффициентов теплоотдачи при вынужденном, конвективном теплообмене;

- критериев динамического и теплового подобия;

- основных параметров теплообменного аппарата.

Часть 1. Оценка термодинамического совершенства цикла Брайтона с регенерацией тепла.

Исходные данные для выполнения 1-й части курсовой работы:

1. Степень повышения давления рабочего тела

2. Степень подогрева

3. Степень регенерации

(для цикла Брайтона с регенерацией тепла).

4. Параметры состояния в начальной точке цикла для всех вариантов:

5. Расход воздуха через двигатель

.
Вариант задания π Δ Степень регенерации
32, 68 6 5,6 0,61

3.2.1. Расчёт параметров состояния в контрольных точках цикла Брайтона без регенерации тепла (рис.1)

Рис.1. Изображение цикла Брайтона в p-v координатах

Точка 1:

Т1=288 К

р1=101325 Па

Уравнение состояния идеального газа

;

.

Точка 2:

Давление:

, где π – степень повышения давления.
;

Па;

Температура

,
подставляем в формулу, получаем:

К;

Удельный объем:

;

Плотность:

Точка 3:

Давление:

Па;

Температура:

К, где
– степень подогрева.

Удельный объем:

;

Плотность:

.

Точка 4:

Давление:

Па;

Температура:

К;

Удельный объем:

;

Плотность:

.

3.2.2. Расчёт энергетических показателей термодинамических процессов цикла Брайтона без регенерации тепла.

Процесс 1-2:

Изменение внутренней энергии рабочего тела, Дж/кг:

;

Деформационная работа, Дж/кг:

;

Техническая работа, Дж/кг:

;

Изменение теплосодержания рабочего тела, Дж/кг:

;

Удельная теплоемкость при постоянном давлении:

;

Количество теплоты, участвующее в процессе:

;

Изменение энтропии рабочего тела: