Смекни!
smekni.com

Формирование современной сырьевой угольной базы коксохимического производства ОАО Северсталь (стр. 2 из 3)

Снижение доли печорских углей в шихте при­водит к усилению колебаний всех показателей (как шихты, так и кокса) относительно средних значений. Основная причина этого заключается, с одной стороны, в изменчивости свойств углей в пределах определенных марок и, с другой сторо­ны, в широкой вариативности марочного соста­ва концентратов, производимых в настоящее вре­мя на углеобогатительных фабриках Кузнецкого бассейна. При этом выбор того или иного постав­щика может оказаться критическим. Так, при полной замене исходного сырья с использовани-


ем концентрата ЦОФ «Кузнецкая» вместо угля ЦОФ «Абашевская» и концентрата ГОФ «Тому-синская» вместо угля ЦОФ «Березовская» сред­нее значение Л/10 повышается с 8,53 до 8,96%, а максимальное — с 12,09 до 14,25%.

В этой связи при составлении рабочего плана производства кокса на коксовых батареях № 4 и № 5—6 из кузнецких концентратов особое вни­мание уделяли их фактическому марочному со­ставу, для чего осуществляли рефлектограммный анализ поступающих на ОАО «Северсталь» кон­центратов. Опыты были проведены в пять этапов при постепенном увеличении в шихте доли углей Кузбасса. Часть кокса батареи № 4 (70—88%) была потушена на УСТК. Показатели качества полу­ченного кокса в сравнении с данными базисного периода на примере коксовой батареи № 4 при­ведены в работе [9].

Как видно из данных этой работы, при пере­ходе от базисного периода к этапам I—V с посте­пенным увеличением в шихте доли углей Кузбас­са наблюдается постепенное снижение показате­лей механической прочности кокса: заметно сни­жается индекс дробимости М25 и повышается — индекс истираемости кокса М|0. При этом более чувствительны к вводу кузнецких углей показа­тели качества кокса батарей № 5—6 с мокрым ту­шением [9]. Показатель Ктреакционной способ­ности кокса по ГОСТ 10089-89 (при 1000 °С) для опытных этапов в среднем несколько ниже в срав­нении с базисными данными, что может обуслов­ливаться как составом минеральных компонен­тов, так и особенностями текстуры кокса. При этом показатель CRI, характеризующий реактив­ность кускового кокса при более высокой темпе­ратуре (1100 °С), повышается относительно бази­са на этапах I и II, уменьшаясь при дальнейшем увеличении доли кузнецких концентратов с по­вышенным содержанием углей коксового ряда. Показатель CSR, характеризующий «горячую» прочность кокса, в конце испытаний (этапы IV, V) приобретает наиболее высокие значения. Кокс, получаемый на батарее № 4 и подвергае­мый сухому тушению, характеризуется в среднем меньшей реактивностью CRI и более высокой доменной прочностью по CSR. Таким образом, хотя при введении в шихту повышенного содер­жания углей Кузбасса механическая прочность кокса несколько снижается, его прочность после реакции с СО2 возрастает, что обусловлено, по-видимому, увеличением доли анизотропных тек­стур кокса.

Дополнительно методом ящичных коксований (с использованием перфорированных цилиндров с загрузкой 2 кг угля) в печных камерах коксовых





батарей № 5-6 было проведено опробование восьми типовых углей Австралии, фигурирующих на мировых рынках коксующихся углей [10]. По­казано, что наиболее пригодными для разработ­ки шихт представляются коксовые угли Goonyella и Reverside. В количестве соответственно 20 и 20— 35% они могут заменить кузнецкие угли марки КС и частично жирные печорские угли. Недостатком австралийских углей следует считать их повышен­ную зольность (8,6—9,8%) и сернистость (до 0,6%), а достоинством — отнесение их к марке 1К по ГОСТ 25543—88 и пониженное содержание в золе щелочных компонентов (1,1 —1,2%), что бла­гоприятствует получению кокса низкой реакци­онной способности т0,133+0,136 см3 -г~' с~'). Этому соответствуют показатели CRI = 30 и CSR = 55%. При использовании углей Австралии из-за их повышенной стоимости возрастает и се­бестоимость кокса. Поэтому расширение сырье­вой базы за счет австралийских углей реально лишь при возникновении форс-мажорных обсто­ятельств с поставками углей коксового ряда либо при повышении стоимости российских углей до мирового уровня.

В отличие от этого показатель CRI определя­ют по величине «угара» кокса в атмосфере СО2 (5 л/мин) при 1100 °С и продолжительности ис­пытаний т = 2 ч. При этом используют повышен­ную загрузку кокса (200 г) при большем размере его частиц (20 мм). Таким образом, более надеж­но моделируются условия реагирования кокса в доменной печи, а количества подвергнутого воз­действию СО2 кокса вполне достаточно для ис­пытания на прочность. По выходу класса > 10 мм при испытании в барабане устанавливают индекс «горячей» прочности кокса CSR.


Газификация кокса по этой методике идет пре­имущественно во внутридиффузионном режиме [12, 13], как это имеет место в шахте доменной печи, вследствие чего определяемый по «угару» кокса CRI (%) коэффициент скорости процесса газификации

следует рассматривать как некоторую эффектив­ную величину, отражающую реактивность по­верхностного слоя крупнокускового кокса. По­скольку процесс в этом случае проводят при бо­лее высокой температуре (выше на 100 °С), зна­чения &эф по (2) для тех или иных исследуемых коксов будет всегда выше в сравнении со значе­нием константы скорости к по (1). Соотношение между к . и к можно характеризовать поэтому эф-

Эф

фективной энергией активации (кДж/моль):

Как показано в работе [13], величины Е и Кт находятся в обратной корреляционной зависимос­ти, причем взаимосвязь между ними для различных коксов подчиняется одной и той же закономернос­ти для образцов кокса различных производителей (рис. 2). Коэффициент корреляции между отдель­ными значениями для 40 образцов металлургичес­кого кокса и усредненной кривой Еа =f(KJ, прове­денной по методу наименьших квадратов, состав­ляет 0,955. По-видимому, чем пассивнее углерод кокса взаимодействует с СО2 (т.е. чем ниже значе­ния KJ, тем выше должен быть активационный барьер, и наоборот: чем легче осуществимо взаи­модействие С + СО2 (т.е. чем выше значения KJ, тем более низкий активационный барьер должен быть преодолен для протекания этой реакции.

При известных значениях эффективной энер­гии активации Еаи истинной константы скорос­ти к взаимодействия кокса с СО2 можно из (4) определить коэффициент к'




Наибольшей реакционной способностью по обоим показателям реактивности ти CRT) ха­рактеризуется кокс коксовых батарей № 5—6, под­вергаемый мокрому тушению, а наименьшей ре­акционной способностью — кокс сухого тушения батарей № 7—10. При этом данные по коксу бата­реи № 4, который подвергается сухому тушению лишь частично, занимают промежуточное поло­жение.


эмпирические коэффициенты которой а и b при­нимают конкретные численные значения в зави­симости от коксуемого сырья и условий коксова­ния (см. таблицу). Численные значения коэффи­циентов формулы (7) для кокса разных батарей несколько отличны, но в пределах доверительных интервалов (удвоенных значений указанных со знаком + среднеквадратических отклонений) со­гласуются между собой, что дает возможность получить усредненную зависимость между CSR и С/?/[14].

лей. Сделан вывод, что показатели как «холод­ной», так и «горячей» прочности формируются под воздействием множества факторов, каждый из которых меняется случайным образом.

При стабильном режиме работы коксовых пе­чей основной причиной довольно широкой ва­риации значений всех индексов прочности кок­са можно считать изменчивость вещественного состава и свойств используемых при составлении коксовых шихт углей и концентратов [15]. При этом показатели «холодной» и «горячей» прочно­сти отражают как общие элементы структуры коксов (о чем свидетельствует усредненная кор­реляция между ними), так и особенности струк­туры, отличающиеся соответственно в случае ис­ходного кокса и после реакции его с СОГ В част­ности, именно показатель «горячей» прочности CSR лучше всего коррелирует с удельным расхо-







дом топлива на выплавку чугуна в доменной печи. Выполненный в [6] математико-статистический анализ производственных данных показал, что повышение значения CSR на 1 % приводит к сни­жению расхода кокса на Д# = 0,7-^3,2 кг/т чугуна: