Смекни!
smekni.com

по Производственные технологии (стр. 3 из 6)

Недостатком повышения однородности стекла за счет уменьшения числа химических компонент, входящих в его состав (а нежелательные примеси и загрязнения также входят в образующуюся структуру стекла), является ограниченность такого пути. Для стекол существует нижний теоретический предел потерь, определяемый рассеянием и абсорбцией светового излучения, обусловленной структурой молекул, входящих в стекло. Для идеального оптического стекла из окиси кремния (примесей абсолютно нет) этот предел равен 0,1 Дб/км при длине волны пропускаемого ИК-излучения 1,3 мкм. Данное значение почти уже достигнуто практически. Таким образом, достигается и верхний предел расстояния между ретрансляторами на кварцевом оптическом кабеле - 100 км.

Задачей, на решение которой направлено данное изобретение, является повышение атомарной однородности структуры стекол.

Для решения поставленной задачи в оптическом стекле, включающем два или более химических элемента, по крайней мере один химический элемент содержится в изотопно-обогащенной форме.

Как известно, изотопами называются разновидности атомов одного и того же химического элемента, имеющие различную массу (при неизменном заряде ядра). Изотопы подразделяются на стабильные и радиоактивные. Только стабильные изотопы и рассматриваются в настоящем техническом решении. Часть химических элементов (таких в природе 22 элемента) состоит только из одного стабильного изотопа, в их числе - алюминий, натрий, фосфор, фтор. Остальные элементы содержат от 2-х до 10-и стабильных изотопов (И.П. Селинов "Изотопы", Справочник, Наука, М., 1970). Изотопия элемента характеризуется массой имеющихся изотопов и их содержанием в природной смеси. Нижеприведенные таблицы в качестве примера показывают естественную изотопию кремния и германия.

Видно, что для кремния и германия количество стабильных изотопов различно (3 и 5), ширина изотопного интервала не совпадает (2 и 6 атомных единицы массы), содержание изотопов также собственные. В природе нет элементов с одинаковыми изотопными характеристиками.

В повседневной практике отличия в свойствах различных изотопов одного и того же элемента незаметны, и все они интегрально определяют свойства самого химического элемента. Тем не менее установлены и изучены многие изотопные эффекты, влияющие на скорость химических реакций, коэффициенты переноса и др. Именно эти малые отличия позволяют использовать их в технологиях разделения изотопов (М. Шемля, Ж. Перье. Разделение изотопов.- М.: Атомиздат, 1980).

Исследованы оптические изотопные эффекты, состоящие в тонкой структуре спектров изотопосодержащих элементов. Эти отличия послужили основой для лазерного метода разделения изотопов (Летохов В.С., Мур С.Б. Лазерное разделение изотопов, Квантовая электроника, т. 3, N 2, 1976, стр. 248).

Таким образом, оптическая среда, содержащая различные изотопы одного и того же элемента, не может рассматриваться как однородная. Изотопы, имея собственные спектры поглощения, возбуждения и др., уширяют полосу спектра поглощения элемента, приводят к дополнительной дисперсии, нелинейностям при передаче оптического сигнала. Указанные факторы особенно нежелательны в оптических волокнах.

Нахождение в оптическом стекле химического элементы в изотопно-обогащенной форме: с меньшим числом изотопов, подавляющим содержанием одного изотопа, повышает атомарную однородность стекла, и вышеназванные негативные факторы минимизируются. Наивысшая атомарная однородность достигается при предельном обогащении, когда один из изотопов элемента берется в моноизотопном виде.

Ингредиенты, предназначенные для введения в стекло в изотопной форме, берутся с теми же самыми качественными характеристиками: агрегатном состоянии и не худшей химической чистоты, как и при приготовлении обычного стекла данной марки. Количественный состав ингредиентов также сохраняется.

Выбор изотопной формы, в какой необходимо использовать тот или иной химический элемент, обогащаемые изотопы, степень изотопной чистоты зависят от характеристик излучения, состава стекла. Универсальным и максимально эффективным решением является содержание в стекле элементов с предельным обогащением, т.е. в моноизотопной форме.

Осуществимость технического решения вытекает из разработанности и практического действия различных методов разделения изотопов как урана, так и всех стабильных изотопов (см., например, сборник "Изотопы в СССР", Москва, Атомиздат, 1980; "Атомная энергия", том 67, N 4, окт. 1989). Воспроизводимость результата определяется высоким достигнутым уровнем анализа изотопного состава элементов методами масс-спектрометрии.

Изотопно-обогащенная форма может оказаться предпочтительной и не для основного стеклообразующего элемента, а для легирующего, что должно устанавливаться из спектральных характеристик как стекла, так и излучения, пропускаемого сквозь него.

Только новая форма - изотопная, по крайней мере одного из ингредиентов, позволяет перейти на более глубокий уровень однородности стекла, принципиально недостижимый известными техническими решениями. Оптическое стекло по данному техническому решению позволяет выйти за рамки существующих теоретических ограничений, накладываемых на его характеристики, в том числе на уровень потерь.

Предложение применимо ко всем многоизотопным элементам, используемым в любых классах стекол и не только в оптических волокнах.

Настоящее техническое решение имеет в числе своих преимуществ то, что использование изотопной формы химических элементов в оптическом стекле не требует какого-либо изменения требований к компонентам, входящим в состав данной марки стекла. Для реализации настоящего предложения в технологии стекла не нужно введение никаких специальных операций, режимов, приемов. Таким образом, все существующие способы приготовления различных типов стекла сохраняются в неизменном виде.

Электровакуумное стекло широко применяют в радиоэлектронной технике, благодаря тому, что оно обладает специфическими техническими свойствами и большими технологическими возможностями формования деталей любой конструкционной сложности. Из стекла изготовляют оболочки ламп накаливания, люминесцентных ламп, галогенных ламп, телевизионных кинескопов, а также различные устройства рентгеновской техники, конденсаторы и другие элементы.

Многие электровакуумные стекла относятся к алюмоборосиликатной системе и отличаются хорошими технологическими и эксплуатационными свойствами - механической прочностью, термостойкостью, химической стойкостью, высокой диэлектрической способностью.

Электровакуумные стекла объединяют большую группу изделий, используемых в радиоэлектронной технике. К ним относят оболочки ламп накаливания, люминесцентных ламп и ламп высокоинтенсивных источников света, детали электронно-лучевых трубок для телевизоров, оболочки для радиоламп и др.

Составы стекол для электронной и электровакуумной техники весьма разнообразны. Это во многом объясняется различными требованиями, предъявляемыми к свойствам стекол в связи со специфическими условиями их эксплуатации. Так, для изготовления деталей цветных кинескопов применяют стекла трех различных химических составов: при производстве экранов используют состав С95-3; конусы изготовляют из состава С94-1; для изготовления горловин кинескопов применяют состав С93-1.

Важнейшая характеристика электровакуумных стекол—их вакуумные свойства, определяемые газопроницаемостью. Повышенная газопроницаемость стекол может явиться причиной потери вакуума в электровакуумных приборах.

Известно, что наибольшую скорость диффузии в стеклах имеет гелий, на втором месте стоит водород, другие газы характеризуются малыми коэффициентами диффузии. Наибольшей газопроницаемостью обладает одно-компонентное кварцевое стекло и, наоборот, многокомпонентные стекла отличаются малой газопроницаемостью. Электровакуумные стекла, относящиеся к многокомпонентным стеклам, в целом отличаются надежной газонепроницаемостью. Их газопроницаемость по отношению к гелию в 6—7 раз меньше, чем кварцевого стекла, и в 2—2,5 раза меньше, чем оконного стекла.

Закаленным стеклом называется листовое стекло, которое подверглось специальной химической и термической обработке, в результате чего прочность данного стекла и устойчивость к резким перепадам температур существенно повышается (более чем в 5 раз). Кроме того, стекло становится значительно более безопасным для человека. Это проявляется в том, что при разрушении закаленное стекло рассыпается на множество маленьких тупых осколков, которые безопасны для человека (обычное же стекло разрушается на опасные осколки). Закаленное стекло производится в специальных печах из листов стекла.

Процесс закалки стекла происходит в следующем порядке: сначала стекло разогревают выше температуры размягчения, а затем интенсивно охлаждают в равномерно подаваемых на всю поверхность стекла струях воздуха. Первыми при охлаждении затвердевают поверхностные слои стекла, а затем внутренние слои, где при охлаждении возникают остаточные напряжения сжатия. Эти напряжения и обеспечивают механическую прочность и термостойкость материала. В результате данных действий физические характеристики стекла изменяются:

* значительно повышается прочность материала по отношению к внешним воздействиям (механическим и термическим). Например, предел прочности закаленного стекла при изгибе может достигать 250 МПа. Это в 5-7 раз выше, чем у обычного листового стекла;