Смекни!
smekni.com

Конструкция и усовершенствование технического обслуживания тянущих валков (стр. 2 из 3)

Исходя из данных условий, можно прийти к следующим заключениям:

- в идеале, уровень напряжения должен оставаться в пределах Гудманской зоны низкого повреждения при отливке.

- только сплошные валки достигают низкой зоны повреждения при достижении теплового равновесия.

- поверхностное напряжение четырёхсоставных верхних опорных валков и верхних опорных валков с осевым отверстием, с оборотной водой, которая охлаждает центр крена, остаётся в зоне сжатия. Среднее напряжение остается высоким.

Если бы валки изготовляли из сплава, который имеет предел текучести выше стали марки 8620, то диаграмма Гудмана имела бы более обширную зону низкого повреждения и могла бы уменьшить повреждение при каждом цикле, продлив срок службы валка.

2.1 Температура подпятника. Для того, чтобы определить играет ли температура главную роль в разрушение в результате потери прочности при смятии, и, соответственно, в разрушении перевалков валков, была организована специальная программа. Данная программа измеряла температуру упорной колодки и гнезда подшипника. Был смоделирован термоэлемент для того, чтобы заменить торцевую крышку болта на типичный валок, диаметром 17,5 мм. Термоэлемент был создан подпружиненным с целью обеспечения контакта между верхним термоэлементом и концом болтового отверстия.

Температура измерялась приблизительно на расстоянии 13/4 дюйма от наружной поверхности подушки валка и приблизительно на расстоянии 2-х дюймов от наружной поверхности обоймы подшипника. Для получения температурных данных был использован пирометр полного излучения, направленный на наружную поверхность подушек валков. Заключительная скомпонованная информация показана на табл.1

Табл. 1 Отношение между расположением тянущих валков и температурой подпятника.

Температура подпятника, ˚F


Среднее значение

Максимальное

Сечение валка После 7 плавок После 14 плавок значение

после 14 плавок

Криволинейное

Сечение (44-45)

Верхний валок 138 172 220

Нижний валок 136 163 220


Прямое сечение

(56-71)

Верхний валок 114 158 200

Нижний валок 128 180 205


Прямое сечение

(72-84)

Верхний валок 126 216 240

Нижний валок 147 300 380

Заданное вытягивание заготовки в разной степени влияет на ширину плиты. Нижние валки, находящиеся в отрезке от 72 до 84 (рис.5) , являются самыми горячими. Причина этого - недостаточная система охлаждения водяными брызгами нижних валков. (Валки охлаждались внешним путем, приблизительно 20 галлонов воды в минуту).


Область уплотнения подшипника представляет самый большой интерес. Температура на внешней обойме подшипника превышает 300˚F, тогда как возле уплотнения подшипника была зафиксирована температура в 350-400˚F, которая позднее была проверена методом конечных элементов. Уплотнение подшипника имеет более высокую температуру, которая доходит до 225˚F. Поэтому, достигнув температуры 350˚F и больше, уплотнение подшипника разрушается и подпятник подвергается водному загрязнению.

3. Конструкция валка.

Исходя из вышеперечесленных результатов описанных исследований, была одобрена конструкция валка с осевым отверстим как для верхних, так и для нижних валков, которые изготовляются из ранее использовавшейся высоколегированной стали марки 8620.


Заключение о среднем сроке службы для разных типов валков, включая валок с осевым отверстием из высоколегированного сплава, основывалось на 15-летнем исследовании валков. Данные результаты отображены на рис.6

Данные, отображенные на рис.6, показывают средний тоннаж продукции до того, как валки выходят из строя. Здесь показана диаграмма общих поломок валков за период 5 лет.

Средний срок службы валка для типичного 4-составного (пустотелого) валка составляет приблизительно 425,000 тонн. Средний срок службы сплошного валка, сделанного из стали марки 8620 составляет 500,000 тонн; срок службы высоколегированного валка с осевым отверстием превышает 1.2 миллиона тонн.

Дополнительные причины, которые обусловили переход на высоколегированный валок с осевым отверстием:

- Применение как верхних валков, так и нижних ( в отличие от четырёхсоставных валков, которые используются только с верхними валками).

-Сложность инвентаря для внутренней и внешней центробежно-литой муфты, концов без буртиков и т.д., необходимого для создания четырёх-составного валка.

Первоначальная стоимость высоколегированного валка с осевым отверстием на 30% меньше по сравнению как с четырёхсоставным валком, так и со сплошным валком, сделанным из стали марки 8620.

По сравнению с валками с осевым отверстием, 80% поломок валков и всего 50% тоннажа выплавки соответствуют двум типам четырёхсоставных валков.

В 1988 году, количество поломок валков уменьшилось на 90% по сравнению с 1981 годом.

Было проведено исследование, целью которого являлось определение уровня увеличения трещин от нагревания в новых высоколегированных валках с осевым отверстием. Для исследования было отобрано 20 валков. Валки были изъяты из литейных машин. Исходя из результатов исследования, можно создать программу, которая могла бы предопределять глубину трещин в валках и устанавливать возможные методы реконструкции, которые позволили бы снизить цены и время восстановления оборудования.

3.1 Строение Подпятника. Подшипники качения со сферическими роликами обычно используются при вытягивании заготовки. Когда данные подшипники стали использоваться при высоких температурах и в среде с системой водянного охлаждения и накала, возникли проблемы в сравнительно ранние сроки.

На рис.7 показана типичная схема подшипников качения со сферическими роликами. В положении 52 сделан полный анализ тянущего валка (Рис.5).

Действующие силы:

- Вес плиты (Fп - 6700 фунтов);

- Ферростатическое давление, оказываемое на жидкое ядро (Fф - 134,000 фунтов);

- Вес валка (Fв - 6100 фунтов);

- Тяговое усилие, вызываемое крутящим моментом, который создается приводным электродвигателем (Fэ - 21,000 фунтов);

- Сила сжатия, присутствующая между подпятником и корпусом (Fс - 2500 фунтов);

Силы, действующие на валок, показаны на рис.8 следующие:

1) горизонтальная:

Fг= Fэ=2100 фунтов= 10.5 тонн

2) вертикальная

Fв= Fп + Fф+Fв=146,800 фунтов= 73.4 тонн

3) сила сжатия

Fc=2500 фунтов= 1.25 тонн

На рис.5 изображен тянущий валок. Каждый верхний валок содержит два сферических подшипника на каждом конце, каждый нижний валок содержит сферический и вторичный подшипник на каждом конце. Было обнаружено, что 65% всех поломок подшипников происходит на криволинейной секции конвейера. Кроме того, 60% поломок в криволинейной секции происходит на нижних валках и 40% поломок наблюдается у подшипников, диаметр которых 15,5 дюймов. Поскольку валки с диаметром 15,5 дюймов составляют 15% от общего числа тянущих валков, именно они являются причиной поломок 40% подшипников.

В октябре 1981 была установлена первая партия протестированных валков, имеющие позиции с 52 до 55. Результаты показали, что срок службы валков увеличился вдвое по сравнению со сферическими подшипниками.

В 1981 году у валков, имеющих позицию с 52 по 54, наблюдались сбои в работе (15 подшипников в месяц). Эта характеристика наблюдалось у 112 вышедших из строя подшипников за один миллион плавок. В 1988 году заранее прогнозировали объем вышедших из строя валков с целью заблаговременного устранения или ремонта. За 6 месяцев было насчитано 2 миллиона вышедших из строя валков.

Другим фактором, повлиявшим на переход на валок, имеющий позиции с 52 по 54, является цена консистентной смазки. Такой валок необходимо смазывать раз в месяц, тогда как подшипник качения со сферическими роликамитребуется смазывать каждый 10 минут на протяжении 24-х часов. Таким образом, цена консистентной смазки снижается на 90%.

Преимущество валков данного типа – уменьшение цены ремонта шейки валка. Опыт показал, что стоимость ремонта шейки валка можно снизить даже после разрушения в результате потери прочности при смятии на 20%. Переход на конический роликоподшипник дал возможность уменьшить расходы путем повышение срока службы подшипника, уменьшения интервалов подачи консистентной смазки, цены на сборку валка и стоимость ремонта шейки валка.