Смекни!
smekni.com

Расчет параметров разрабатываемого АЦП (стр. 2 из 4)

Погрешность аппроксимации представляет собой ничто иное, как погрешность квантования, которую определяют из следующего выражения:

.

Тогда можно найти частоту дискретизации:

,

.

При нахождении частоты дискретизации по Бернштейну обычно получается завышение требуемого значения

до 10 – 14 раз. В нашем случае частота дискретизации по теореме Бернштейна в 13,6 раза превышает частоту дискретизации по теореме Котельникова, что указывает на верность расчета.

3. Проектирование структурной схемы АЦП

Структурная схема разрабатываемого устройства представлена на рисунке 3.1.

Рисунок 3.1. Структурная схема устройства.

1 – Входной буферный каскад

2 – Фильтр низких частот

3 – ПСЗ

4 – Устройство выборки хранения

5 – Устройство определения знака

6 – Сравнивающее устройство

7 – ЦАП

8 – РПП

9 – Блок выходных регистров

10 – Делитель частоты

11 – Внутренний генератор тактовой частоты

12 – разъем источника питания.

4. Проектирование принципиальной схемы АЦП

4.1. Проектирование входного каскада.

Согласно ТЗ входное сопротивление разрабатываемого АЦП должно быть более 2 МОм. Для обеспечения этого требования в качестве входного каскада используется операционный усилитель, включенный по не инвертирующей схеме включения. На рисунке 4.1.1. изображен фрагмент принципиальной схемы, на котором изображены входное разъемное соединение, через которое в схему подается входное напряжение (Input) относительно нулевого провода.

Рисунок 4.1.1. Принципиальная схема входного каскада разрабатываемого АЦП.

Коэффициент усиления входного каскада равен единице. В данной схеме используется операционный усилитель OP-37E.

Техническое задание содержит требование по обеспечению входного сопротивления разрабатываемого устройства не менее 1МОм. Это сопротивление можно определить как

, где
- сопротивление операционного усилителя по синфазному сигналу.

Выберем в качестве сопротивления R3 резистор

C2-33H - 0.125 - 2.05 МОм ±5%

МОм.

Согласно расчетам, входное сопротивление равно 2,05 МОм, требование технического задания относительно входного сопротивления выполняется.

Резистор R10 необходим для балансировки операционного усилителя, т.е. для устранения аддитивной составляющей погрешности. В его качестве выберем резистор:

СП3 – 19A - 0,125 – 15кОм ± 10 %.

Резистор R5 необходим для повышения устойчивости каскада. Т.к. инвертирующей вход операционного усилителя не имеет связи с землей, то обратная связь получается стопроцентной, что и обеспечивает единичный коэффициент преобразования каскада. В качестве резистора R5 выберем:

С2-33Н - 0,125 – 10 КОм ±5%

4.2. Проектирование фильтра нижних частот.

При проектировании аналого-цифрового преобразователя следует учесть тот факт, что, в соответствии с теоремой Котельникова, спектр полезного сигнала должен располагаться в диапазоне от 0 до

, несоблюдение этого условия вызовет эффект наложения спектров. Это значит, что если какая-либо из гармонических составляющих сигнала будет превышать
, то её уровень будет накладываться на составляющую спектра с частотой
, где
- частота рассматриваемой гармонической составляющей спектра сигнала.

Для устранения описанного выше эффекта наложения в схему включен фильтр нижних частот. Любой фильтр не может полностью отрезать частоты, он может их лишь с определенной степенью подавить. Это значит, что частоты, превышающие

будут присутствовать в спектре, но их амплитуда будет подавленной, по сравнению с полосой пропускания фильтра.

В соответствии с техническим заданием, погрешность разрабатываемого устройства не должна превышать 0,05%. Таким образом, примем за основу тот факт, что эффект наложения спектров не должен вносить погрешность, превышающую 0,05%. Выбор крутизны фильтра можно пояснить рисунком 4.2.1.

Рисунок 4.2.1 Наложение спектров при использовании ФНЧ.

Крутизну фильтра можно определить из следующей формулы:

, где

W(f) – уровень сигнала на определенной частоте,

fd – частота дискретизации

fс – частота среза фильтра

Следовательно, будет достаточно использование в схеме фильтра пятого порядка, имеющего крутизну -100 Дб/дек.

В качестве ФНЧ используются два каскада фильтров второго порядка и один каскад первого порядка. В схеме используется фильтр Батерворта поскольку он имеет максимально плоскую АЧХ в полосе пропускания. Фильтр спроектирован по схеме Салена Ки.

Один каскад фильтра представлен на рисунке 4.2.2.

Рисунок 4.2.2 Каскад фильтра низких частот второго порядка.

Расчет фильтра выполнен по методике, описанной в [2].

Каскад фильтра первого порядка приведен на рисунке 4.2.3.

Рисунок 4.2.3 Каскад фильтра низких частот первого порядка.

Для того, чтобы выходное напряжение ФНЧ не было инвертированным по отношению к входному сигналу АЦП, фильтр 1-го порядка построен по не инвертирующей схеме включения операционного усилителя.

Передаточная функция фильтра 1-го порядка имеет вид:

, где

T – постоянная времени фильтра 1-го порядка

p – оператор Лапласа.

Пусть С14=1нФ, тогда

КОм

Поскольку не инвертирующая схема операционного усилителя в данном включении не может обеспечить единичный коэффициент преобразования, назначим фильтру коэффициент, равный двум. Это приведет к тому, что диапазон выходных напряжений фильтра будет в 2 раза больше диапазона входных напряжений, и составит ±5,12В. Из этого следует, что

R28=R7=1.15 КОм

Функция преобразования ФНЧ выглядит следующим образом:

Из этого выражения можно вычислить, что на частоте fd-fc уровень сигнала составит 0,0095%

Типы и номиналы пассивных элементов ФНЧ приведены в таблице 4.2.1.


Таблица 4.2.1.

Типы и номиналы пассивных элементов ФНЧ.

Обозначение Тип
R9, R12 C2-13 – 0.125 – 909Ом ±0,1%
R11, R13 C2-13 – 0.125 – 5,49КОм ±0,1%
C8, C9 К10-43 – 50В – 750пФ ±1%
C10, C11 К10-43 – 50В – 360пФ ±1%
R27, R28 C2-13 – 0.125 – 1.15KОм ±0,1%
С14 К10-43 – 50В – 1000пФ ±1%

4.3. Проектирование ПСЗ.

Преобразователь среднего значение имеет своей целью обеспечить на выходе напряжение, постоянная составляющая которого пропорциональна среднему значению выпрямленного входного сигнала.

В данной схеме используется активный двухполупериодный выпрямитель на двух операционных усилителях.

Принципиальная схема ПСЗ приведена на рисунке 4.3.1.

Рисунок 4.3.1 Принципиальная схема ПСЗ.

Произведем расчет номиналов резисторов предложенного ПСЗ.

В качестве диодов VD1 и VD2 используются высокочастотные импульсные диоды КД522А.

Пусть UВХ>0, тогда входной сигнал приходит на инвертирующий операционный усилитель DA7. Диод VD1 – закрыт, а VD2 – открыт. Цепь обратной связи замыкается через сопротивление R21. Проинвертированное напряжение проходит на операционный усилитель DA8.

Запишем сумму токов на инвертирующем входе усилителя DA8:

Пусть UВХ<0, тогда открывается диод VD1, замыкая цепь обратной связи. Она задает нулевой коэффициент усиления усилителя DA7.

Выходное напряжение ПСЗ можно определить как :

Для сохранения постоянства коэффициента преобразования для положительной и отрицательной полуволн сигнала необходимо выполнить условие:

=1