Смекни!
smekni.com

Контроль за наведенным напряжением (стр. 6 из 8)

Рисунок 6 . Обнаружение сигнала в вертикальном поле зрения

Узнаваемость сигнала может дополнительно обеспечиваться комбина­цией таких характеристик, как: яркость, цвет, пространственное располо­жение, эффект мигания.

Улучшение восприятия опасной ситуации и снижение остроты внима­ния оператора можно получить, применяя комбинированную индикацию. Например, синхронная подача звуковых и световых сигналов расширяет возможности использования приборов в различных условиях.

В случаях затруднения восприятия оптической и звуковой информа­ции необходимо передавать или дублировать данные тактильным спосо­бом, например вибрацией, пропорциональной уровню измеряемой величи­ны. Высокой чувствительностью к тактильным индикаторам обладают ру­ки, но следует учитывать случаи, когда необходимо применять перчатки, заметно снижающие надежность восприятия тактильного сигнала.

С появлением индивидуальных сигнализаторов напряжения стало возможным контролировать уровень напряжения с земли, что позволило лишний раз не рисковать своей жизнью.

Перед ними не стоит задача определения с заданной точностью значения контролируемой величины. Это обстоятельство позволяет упростить их конструкцию, повысить удобство эксплуатации и надежность.

Необходимость применения при работе на электро­установках устройств контроля наличия напряжения подтверждается материалами расследований несчастных случаев, происшедших в электроэнергетике. Анализ материалов по электротравматизму показывает, что наибольшее число травм связано с тем, что не было проверено наличие напряжения. Распространенной причиной является также нарушение безопасного расстояния. Установлено, в частности, что в электричес­ких сетях РАО "ЕЭС России" в девяти случаях в 2000 г. и в десяти - в 2001 г. можно было предот­вратить смертельные электротравмы при нали­чии у пострадавшего сигнализаторов напряжения (для сравнения, общее количество смертельных электротравм в РАО в 2000 г. - 34, в 2001 - 28). Причинами, по которым не было проверено наличие напряжения, являются: отсутствие необходимых приборов, их неисправность или неприменение. Помимо низкой производственной дисциплины, осознанное неприменение элек­трозащитных средств объясняется тем, что имеющееся оборудование неудобно в эксплуата­ции, громоздко и морально устарело.

Многолетняя статистика производственного травма­тизма в электроэнергетике дает стабильное соотношение между числом смертельных травм и общим травматиз­мом. Так, в случаях механического травмирования человека летальным исходом заканчивается приблизи­тельно один случай из тридцати. Но при попадании человека под напряжение смертью пострадавшего заканчивается каждый второй несчастный случай, что объясняется, помимо физиологической несовместимости электрического тока и биологических процессов в организме человека, отсутствием внешних признаков опасности оголенных токоведущих частей или металли­ческих конструкций, случайно оказавшихся под напря­жением (отсутствуют свечение, звук, дым и другие устрашающие признаки). Генерируемые СН тревожные сигналы предупреждают человека, "озвучивают" для него опасность, исходящую от находящегося под напряжением оборудования, что способствует повыше­нию внимания, ведет к более взвешенным действиям.

Начавшееся в последние годы широкое применение на эксплуатирующих энергопредприятиях новых, более совершенных УН и СН способствовало в существенной степени снижению электротравма­тизма, в том числе и смертельного. Помимо высоких технических характеристик новые УН и СН должны быть надежны, просты и удобны в эксплуатации, иметь малую массу, привлекательный внешний вид. Для достижения этих целей необходимо использовать новую элементную базу, схемные решения, применять самые совершенные технологии изготовле­ния.

Контроль отсутствия напряжения на проводах воздушных линиях электропередачи (ВЛЭП) можно осуществлять с помощью индивидуальных сигнализаторов напряжения (СН), располагаемых на спецодежде. Они подают сигнал в случае внезапного появления напряжения на отключенных участках ВЛЭП. Различ­ные конструкции СН такого типа разработаны для крепления на каске, в нагрудном кармане, на запястье руки и т.д., они должны находиться во включенном состоянии все время работы. В зависимости от применения СН можно разделить на сигнализаторы напряжения ручные (СНР), предназначенные для определения наличия напряжения без подъема на опору, и на сигнализаторы напряжения касочные (СНК), предназначенные для сигнализации о приближении к источнику опасного напряжения (провод ВЛЭП) на расстояние менее допустимого.

Основное назначение СНР - кратковременное тестирование наличия напряжения непосредственно с земли. Высокая чувствительность, большие потребления не позволяют использовать СНР для постоянного контроля, поэтому для этих целей применяются СНК.

Анализ существующих конструкций выявил ряд недостатков, снижающих надежность срабатывания и удобство эксплуатации СН. Так, различные требования к емкости и габаритам источника питания (вызванные различием в условиях эксплуатации СН) приводят к использованию разных элементов. В СНК размеры источника питания играют существенную роль (обычно применяются миниатюрные дорогостоящие химические источники тока), в то время как в СНР нет подобных ограничений. Попытки использовать нехимические источники тока (тем самым продлить срок эксплуатации без обслуживания), такие как солнечная батарея и динамо-машина ("Пион-2001", рисунок 7) снижают удобство и надежность эксплуатации. Применение аккумуляторов и конденсаторов увеличивает риск использования прибора с разряженным источником питания.


Рисунок 7 .

а – применение СНИ для тестирования наличия напряжения в ВЛЭП;

б – СНИ «ИВА-Н» производства НПЦ «Электробезопасность»;

в – «ПИОН - 2001» производства ЗАО «Техношанс».

СНИ, предназначенные для использования в руке (рисунок 14а), обладают высокой чувствительностью и позволяют определять наличие напряжения на проводах ВЛЭП с земли без подъема на опору. В момент измере­ния СНИ должен находиться в руке выше головы. Одно из достоинств СНИ, по сравне­нию с СНК, заключается в том, что в них можно использовать более дешевые и доступные гальванические элементы питания ("ИВА-Н", рисунок 14б) или другие источники, например динамо-машину ("Пион-2001").

Прибор «ИВА-Н» предназначен для оценки напряженности электри­ческого поля (ЭП) промышленной частоты и индикации допустимого времени пребывания в таком поле ремонтного и обслуживающего персо­нала, производящего работы в зоне сильных ЭП, а также для лиц ин­женерно-технического состава, осуществляющих регламентацию различ­ных видов работ в зоне ЛЭП сверхвысокого напряжения.

Прибор "ИВА-Н" измеряет напряженность ЭП в диапазоне от 5 до 30 кВ/м, он имеет светодиодную линейку (11 сегментов), шкалу нап­ряженности ЭП и шкалу допустимого времени пребывания персонала в ЭП. Прибор оснащен устройством звуковой сигнализации, срабатывающим при нап­ряженности ЭП более 5 кВ/м.

Питание прибора - автономное, от элемента "Крона" или аккуму­лятора со встроенным выпрямителем для подзарядки от сети 220 В. Прибор имеет систему контроля работоспособности. Габаритные разме­ры прибора 195x52x22 мм. масса - 150 г. Прибор комплектуется изме­рительной штангой для обеспечения необходимого, при определении допустимого времени пребывания персонала в ЭП, расстояния между телом оператора и прибором. В корпусе прибора имеется гнездо для крепления измерительной штанги.

Работа прибора "ИВА-Н" основана на электростатической индукции заряда, пропорционального напряженности внешнего ЭП, в измерительном преобразователе емкостного типа, выполненном в виде металлической пластины, усилении и индикации измеренного значения с помощью светодиодной линейки.

Прибор состоит из пяти основных блоков (рисунок 8): измерительного усилителя (ИУ), выпрямителя (В) амплитудного значения сигнала, преобразовательного устройства (ПУ), компаратора (К) и генератора звуковых импульсов (ГЗИ).

Рисунок 8 . Структурная схема прибора «ИВА-Н».

Индуцируемый заряд формируется при помощи преобразователя, выполненного в виде металлической пластины. Блок ИУ имеет переменный коэффициент усиления, регулируемый при настройке прибора. Усиленный сигнал подается на выпрямитель амплитудного значения. Преобразователь уровня (ПУ) зажигает один из 1 светодиодов при поступлении на его вход соответствующего постоянного напряжения с выпрямителя. Сигнал с выпрямителя подается также на компаратор (К), который при определенном уровне включает генератор звуковых импульсов. ГЗИ работает на пьезоизлучающую головку, генерируя прерывистый звуковой сигнал частотой 1 кГц.

Модификация прибора имеет два диапазона: помимо вышеописанно­го еще диапазон с высокой чувствительностью, измеряющий напряженность ЭП от 0,5 до 5 кВ/м. Переход в соответствующий измеряемому юлю режим осуществляется автоматически. На лицевой панели два круглых светодиода указывают, в каком диапазоне работает прибор.

Наличие второго диапазона позволяет использовать прибор для определения наличия напряжения на проводах, розетках, распредели­тельных коробках, для поиска трассы скрытой проводки напряжением 127 В и выше в производственных и жилых помещениях, для проверки заземления работающего оборудования.