Смекни!
smekni.com

Виды и условия возникновения стресса (стр. 2 из 5)

Исследование эндогенного механизма стресса, начатое Г. Селье, получило дальнейшее развитие и нашло отражение в теории нейронной и эндокринной регуляции стресса. К представлению о том, что стресс связан с цепочкой реакций, начинающихся с выработки гипофизом адренокортикотпропного гормона (АКТГ), добавились новые данные о физиологических и биохимических пусковых механизмах стресса.

По Г.Н. Кассилю, схема развития стресса представляется следующим образом. Стрессор через кору полушарий головного мозга сигнализирует гипоталамусу о возникшей опасности. В нервных клетках гипоталамуса происходит мобилизация НА. Из связанной формы НА переходит в "свободное" состояние, активирует норадренергические элементы лимбико-ретикулярной системы (НАЭ) и вызывает возбуждение симпатических центров и тем самым усиливает деятельность симпато-адреналовой системы. Симпатическая стимуляция по главным нервам достигает мозгового слоя надпочечников и вызывает у человека усиленный выброс в кровь смеси адреналина (А) и норадреналина (НА) из мозгового слоя надпочечников. Кровь обогащается адреналином (80-90%) и норадреналином (20-10%). У различных животных соотношение секреции А и НА в мозговом веществе надпочечников значительно варьирует. Так, у кита НА составляет 70 — 80%, у кролика же выделяется почти исключительно адреналин. Катехоламины (КХ) через гематоэнцефалический барьер (ГЭБ) проникают в определенные участки гипоталамуса и лимбико-ретикулярной системы. Происходит активация адренергических, а также серотонинергических и холинергических элементов ЦНС. Повышение их активности стимулирует (+) образование релизинг-фактора (Р), который, стекая к передней доле гипофиза, вызывает у него выработку АКТГ. Под влиянием этого гормона в коре надпочечников увеличивается синтез кортикостероидов (КС) и содержание их в крови нарастает.

Нейроны гипоталамуса секретируют несколько релизинг-факторов. Среди них 7 стимулирующих (ли-беронов) и 3 тормозящих (статинов). АКТГ стимулируется кортиколиберином-полипептидом, состоящим из 39 аминокислотных остатков, последовательность которых установлена.

Как только содержание кортикостероидов в крови достигает верхней границы нормы, срабатывает закон обратной связи. Проникая через гематоэнцефалический барьер в спинномозговую жидкость и мозг, кортикостероиды тормозят образование релизинг-фактора в гипоталамусе. Автоматически приостанавливается образование АКТГ, и уровень кортикотропных гормонов в крови падает.

Изучение механизма обратной отрицательной связи, действующей через КС, показало, что тормозное звено в функционировании системы гипоталамус — гипофиз — наподчечники имеет серотонинергическую природу.

При длительных и особо угрожающих жизни стрессогенных воздействиях в механизме обратной связи, прерывающей секрецию КС, могут возникать сбои, когда взаимодействие между нервными и химическими механизмами разлаживается. Обнаружено, что при этом КС связываются с особым белком крови — транскортином (Т). Соединение КС+Т задерживается гематоэн-цефалическим барьером. Поэтому в мозг перестает поступать информация об избытке КС в крови и секреция АКТГ не прерывается. Когда обратная отрицательная связь, ограничивающая рост уровня КС, не срабатывает, тогда начинается III стадия стресса — стадия истощения. Избыточное накопление гормонов коры надпочечников в жидких средах организма ведет к расстройству функций, которое распространяется постепенно на нервную и эндокринную систему, захватывая сердце, сосуды, легкие, органы пищеварения.

I и II стадии стресса по-разному выполняют свою защитную функцию. II стадии стресса, стадии сопротивления, адаптации к стрессу соответствует увеличение содержания катехоламинов (А и НА), проникающих в мозг за счет повышения проницаемости гематоэнцефалического барьера. В результате усиливается образование релизинг-факторов и, следовательно, непрерывно нарастает уровень кортикостероидов в крови. С ростом КС усиливается защитная функция организма, так как КС обладает противовоспалительным, десенсибилизирующим, антиаллергическим, противошоковым и антитоксическим действием.

Защитная же функция I стадии стресса (реакции тревоги) преимущественно связана с эффектом воздействия А и НА. Увеличение А и НА в крови и тканях организма являются первыми химическими звеньями в развитии стресса. Нередко их называют "аварийными гормонами". Они активируют деятельность сердечнососудистой системы, обмен веществ. НА, попав в кровь, сужает артерии, что ведет к росту артериального давления (АД). Адреналин в русле крови также увеличивает кровяное давление, поднимает частоту пульса, увеличивает объем сердечного выброса, стимулирует распад гликогена и увеличивает содержание сахара в крови.

По особенностям функционирования симпато-адреналовой системы у человека (соотношение выделения А и НА) можно прогнозировать успешность его деятельности в трудных условиях стресса. Так, у спортсменов увеличение в предстартовом периоде НА в 2 — 3 раза — благоприятный признак, тогда как увеличение А в 5-10 раз является показателем чрезмерной психоэмоциональной напряженности и сниженных спортивных результатов.

Известно, что А осуществляет быструю мобилизацию энергетических возможностей организма, что очень важно при кратковременных и интенсивных нагрузках. Он относится к гормону короткого действия, так как в крови и тканях быстро разрушается под воздействием фермента тоноаминоксидазы, тогда как НА поддерживает энергетику организма в течение долгого времени. Поэтому в ответ на стрессор секреция А начинается раньше, чем НА.

Состояние страха, тревоги, ужаса, ожидания опасности обычно сопровождается преимущественным выделением в кровь А. Состояние же умственного и физического напряжения, преодоления психических препятствий, выносливости обычно реализуется на фоне высокого выделения НА и его преобладания над А. Гормоном тревоги называют А, а НА — гормоном гомеостаза. Однако значение А для организма шире, чем его понимание как гормона тревоги. По данным М. Франкенхойзер, лица с высоким уровнем А в обычных, нестрессовых условиях, работают значительно лучше. В условиях же стресса более приспособленными к деятельности оказываются лица с низким содержанием А в крови.

Выделено два типа спортсменов. У "норадреналинового типа" в стрессовом состоянии преобладает высокий уровень накопления в крови и выделения в мочу НА. Спортсмены такого типа обладают большей выносливостью и показывают более высокие спортивные результаты, чем спортсмены "адреналинового типа" с преимущественным выбросом в кровь и поступлением в мочу адреналина.

С повышением спортивного мастерства у спортсменов различного профиля отмечается повышение реактивности именно НА-звена симпато-адреналовой системы. Избыточная секреция А, особенно перед игрой, соревнованием — отрицательный прогностический признак. Таким образом, спортсмены с высокой реактивностью и достаточными резервами медиаторного норадренергического звена симпатоадреналовой системы имеют более выраженную способность к психологической мобилизации и, по-видимому, более перспективны для спорта.

При особенно длительных и тяжелых нагрузках хорошим прогностическим признаком является активация гипоталамо-гипофизно-адреналовой системы (по показателю КС). В стрессовую реакцию вовлекаются также трофотропные механизмы (механизмы восстановления). Их активность может быть измерена по выделению с мочой гистамина, серотонина и других метаболитов. Их вклад может быть более или менее оптимальным для обеспечения индивидуальной устойчивости к стрессу.

При длительных (часовых) физических нагрузках (ходьба на лыжах, марафонский бег и др.) было выявлено два типа реагирования (рис. 52, Б). У высококвалифицированных, тренированных спортсменов наблюдается более оптимальный вариант биохимических реакций (а), чем у менее тренированных (б). Истощение симпато-адреналовой системы (А и НА) и гипоталамо-гипофизно-адреналовой системы (КС) у последних наступает быстрее. А восстановительные процессы начинаются раньше, чем у квалифицированных спортсменов, почти с начала соревнования.

Стресс влияет на эффективность деятельности. При высоком уровне стрессовой напряженности падает работоспособность. Раньше страдают более сложные формы деятельности, например, такие, как операции по стохастическому наведению на цель, нарушаются сложно координационные движения. Простая же сенсомоторная реакция, время реакции на аварийный сигнал в условиях длительного многосуточного нервного напряжения улучшаются. Стресс по-разному влияет на когнитивные процессы. Растет сенсорная чувствительность, абсолютная и разностная, улучшается способность к детекции сигнала. Расширяется поле зрения. Вместе с тем нарушаются более сложные интегративные процессы (сложное опознание, перцептивное научение), увеличиваются ошибки памяти, возможна гиперактивность мышления (навязчивые мысли, бесполезное фантазирование), "уход" от решения стрессогенных проблем (решение побочных "замещающих" проблем или уменьшение активности мышления).

Рост сердечно-сосудистых заболеваний в современном обществе (ишемическая болезнь сердца, гипертония), возникновение язвенной болезни и другие связывают с возросшими эмоциональными перегрузками, с увеличением стрессорных воздействий, которым подвергается человек в наше время. Многие соматические болезни имеют неврогенное происхождение. Основа для понимания причин возникновения и механизмов неврогенных заболеваний была заложена учением И.П.Павлова об экспериментальных неврозах. Благодаря достижениям современной нейрофизиологии павловское учение переживает новый период развития, что связано с выяснением нервных и биохимических механизмов стресса.