Смекни!
smekni.com

Психофизиология зрительного процесса (стр. 3 из 3)

2.4 Центральный отдел зрительного анализатора

Центральный, или корковый, отдел зрительного анализатора расположен в затылочной доле (стриарная кора, поля 17, 18, 19 по Бродману или V1, V2,V3 (согласно принятой номенклатуре)). Первичная зрительная (поле 17, V1) состоит из двух параллельных и значительной степени независимых систем - магноцеллюлярной и парвоцеллюлярной, названных соответственно слоям коленчатых тел таламуса. Магноцеллюлярная система имеет более древнее происхождение; она включена в анализ форм движения и глубины зрительного пространства. Парвоцеллюлярная система образование сравнительно позднее; она участвует в зрительных функциях, таких как цветовое восприятие и точное определение мелких деталей. Считают, что первичная проекционная область осуществляет специализированную, но более сложную, чем в сетчатке и наружных коленчатых телах, переработку информации. Связь этих структур осуществляется с большой точностью: зона V1 фактически содержит «карту» всей поверхности сетчатки. Поражение любого участка нервного пути, связывающего сетчатку с зоной V1, приводит к появлению поля абсолютной слепоты, размеры и положение которой точно соответствуют протяженности и локализации повреждения в зоне V1.

Нейроны зрительной коры имеют не круглые, а вытянутые рецептивные поля небольшого размера. Наряду с этим имеются сложные и сверхсложные рецептивные поля детекторного типа. Та особенность позволяет выделять из цельного изображения лишь отдельные части линий с различным расположением и ориентацией, при этом появляется способность избирательно реагировать на эти фрагменты.

В каждом небольшом участке зрительной коры по ее глубине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют ориентационную колонку нейронов, проходящую вертикально через все слои короны. Колонка – это пример функционального объединения нейронов, выполняющих сходную функцию. Стриарная кора разделена приблизительно на 2500 колонок и содержит примерно 150 000 нейронов.

В зрительной коре существуют функционально различные группы клеток – простые и сложные. Простые клетки создают рецептивное поле, которое состоит из возбудительной и тормозной зон. Структуру рецептивного поля сложной клетки сложно. Эти клетки являются детекторами угла, наклона и движений линий в поле зрения.

В одной колонке могут располагаться как простые, так и сложные клетки. В III и IV слоях зрительной коры, где заканчиваются таламические волокна, найдены простые клетки. Сложные клетки расположены в более поверхностных слоях поля 17, в полях 18 и 19 зрительной коры простые клетки являются исключением, там расположены сложные и сверхсложные клетки.

В IV слое зрительной коры часть нейроны образуют концентрические цветооппонентные рецептивные поля (нейрон, расположенный в центре, реагирует возбуждением на один свет и тормозится при стимуляции другого цвета). Также у этих нейронов существуют антагонистические отношения между центром и периферией, т.е. имеют место рецептивные поля с двойной цветооппонентность (то есть избирательность к цвету сочетается с избирательностью к яркости соответствующего цвета, он не реагирует на диффузную стимуляцию светом волны любой длины). В простом рецептивном поле различают две или три параллельно расположенные зоны, между которыми имеется двойная оппонентность.

Разные части зрительной коры обрабатывают различные свойства зрительных объектов (цвет, форма, движение). Информация, выделенная нейронами первичного зрительного поля 17 далее передается для обработки во вторичную и третичную области зрительной коры. Интеграция зрительных ощущений происходит не в единой высшей области восприятия, а осуществляется посредством обширных прямых и обратных связей между отдельными специализированными областями на всех уровнях. Интеграция также протекает не в один этап благодаря конвергенции сигналов в некоторой высшей точке и не откладывается до тех пор, пока все зрительные зоны завершат анализ информации. Она представляет собой процесс одновременного восприятия и осознания окружающего мира.

Глава 3. Механизмы, обеспечивающие ясное видение в различных условиях

Таких механизмов достаточно много. Об аккомодации и реакциях зрачка рассказывалось в предыдущих главах. Еще одним важным механизмом являются конвергенционные (при рассматривании близких предметов) и дивергенционные (при рассматривании далеких предметов) движения глаз, благодаря которым осуществляется сведение или разведение зрительных осей. Если оба глаза движутся в одном направлении, такие движения называют содружественными. Для получения мозгом зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают в момент включения и выключения светового изображения. Чтобы преодолеть адаптацию к неподвижному изображению, глаз при рассматривании любого предмета производит неощущаемые человеком непроизвольные скачки (саккады). Известно, что чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Кроме скачков, глаза непрерывно мелко дрожат и дрейфуют. Эти движения также очень важны для зрительного восприятия.

При движении объектов ясному видению способствуют следующие факторы:1) произвольные движения глаз вверх, влево, вниз или вправо со скоростью движения объекта 2) при появлении объекта в новом участке поля зрения срабатывает фиксационный рефлекс – быстрое непроизвольное движение глаз, обеспечивающее совмещение изображение предмета на сетчатке с центральной ямкой. При слежении за движущимся предметом происходит медленное движение глаз – следящее движение.

В восприятии разноудаленных предметов и определении расстояния до них, в более выраженном ощущение глубины пространства бинокулярное зрение (т.е. двумя глазами) играет важную роль. При рассматривании предмета двумя глазами его изображение попадает на симметричные точки сетчаток обоих глаз, возбуждения от которых объединяются в корковом конце анализатора в единое целое, давая при этом одно изображение. Если соответствие сетчаток нарушено, то изображение воспринимается двойным.

Зрительное восприятие крупных объектов и их деталей обеспечивается за счет центрального и периферического зрения – изменений угла зрения. Наиболее точная оценка мелких деталей предмета обеспечивается в том случае, если изображение падает на желтое пятно, так как в этом случае имеет место наибольшая острота зрения. Крупные объекты и в целом окружающее пространство воспринимается в основном за счет периферического зрения, обеспечивающего большое поле зрения. Поле зрения – это пространство, которое можно видеть фиксированным глазом. Оно зависит от глубины положения глазного яблока и формы надбровных дуг и носа. Ахроматическое поле зрения больше хроматического. В свою очередь, цветное поле зрения неодинаково для различных цветов. Величина поля зрения изменяется в зависимости от освещенности.

В условиях изменения освещенности ясное видение обеспечивается зрачковым рефлексов, темновой и световой адаптацией.

Темновая адаптация выражается в повышении чувствительности зрительного анализатора, световая – в снижении чувствительности глаза к свету. Основы механизмов темновой и световой адаптации составляют протекающие в колбочках и палочках фотохимические процессы, которые обеспечивают расщепление (на свету) и ресинтез ( в темноте) пигментов, а также процесссы функциональной мобильности: включение и выключение из деятельности рецепторных элементов сетчатки. Также адаптацию определяют процессы происходящие в нервных элементах сетчатки, в частности способы подключения фоторецепторов к ганглиозным клеткам с участием горизонтальных и биполярных клеток. В темноте возрастает число рецепторов, подключенных к одной биполярной клетке, и большее их число конвергирует на ганглиозную клетку. При этом рецептивное поле биполярной и ганглиозной клетки расширяется, что улучшает зрительное восприятие. Включение горизонтальных клеток регулируется ЦНС. Снижение тонуса симпатической НС уменьшает скорость темновой адаптации.

Зрительный анализатор имеет также механизм для различения длины световой волны – цветовое зрение.

Глава 4 Цветовое зрение

Цветовое зрение – это способность зрительного анализатора реагировать на изменение длины световой волны с формированием ощущения света. Определенной длине волны электромагнитного излучения соответствует ощущение определенного света (красный – 620 – 760 нм, фиолетовый - 390 – 450 нм) ощущение цветов связано с освещенностью. По мере ее уменьшения сначала престают различаться красные цвета, позднее всех – синие. Восприятие цвета обусловлено в основном процессами, происходящими в фоторецепторах. Наибольшим признанием пользуется трехкомпонентная тория цветоощущения Ломоносова – Юнга – Гельмгольца – Лазарева, согласно которой в сетчатке глаза имеются три вида фоторецепторов – колбочек, раздельно воспринимающих красный, зеленый и сине-фиолетовый цвета. Три типа цветочувствительных колбочек называются модуляторами, колбочки, которые отвечают за восприятие яркости света – доминаторами.

Существует также теория цветного зрения Эвальда Геринга. Согласно ей, в глазу и/или в мозге существуют три оппонентных процесса: один – для ощущения красного и зеленого, второй – для ощущения желтого и синего, третий – для черного и белого. Можно предполагать, что процессы в колбочках более соответствуют трехкомпонентной теории цветоощущения, тогда как для нейронных сетей сетчатки и вышележащих зрительных центров подходит теория контрастных цветов Геринга.

Наблюдаются аномалии цветового зрения, которые могут проявляться в виде частичной или полной цветовой слепоты. Различают три вида частичной цветослепоты:

1) протанопия (дальтонизм) – слепота на красный цвет

2) дейтеранопия – слепота на зеленый цвет

3) тританопия – слепота на синий и фиолетовые цвета

Возможность оценки длины волны играет существенную роль в жизни человека, оказывает влияние на эмоциональную сферу и деятельность различных систем организма.

Список использованной литературы:

1. Грегори Р.Л. Глаз и мозг: психология зрительного восприятия.- М.: Прогресс, 1970

2. Николаева Е.И. Психофизиология. – Персэ, Логос, 2003

3. Психофизиология/ под ред. Александрова Ю.И. – СПб.: Питер, 2003

4. Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшей нервной деятельности. – М.: ADEMA, 2003