Смекни!
smekni.com

Конструирование электронных учебных материалов в профессиональной подготовке учителей (стр. 4 из 6)

В алгоритме генерации применяется одна из этих форм или их комбинации. Реализация алгоритма генерации осуществляется на основе датчиков псевдослучайных чисел из набора функций MathCAD.

Mcd-файл конструирования шаблона условия и вычисления ответов состоит из трех блоков: а) блок считывания данных из файла сохранения параметров, б) блок формирования шаблона условия, в) блок вычисления ответов и создания подсказок. В некоторых ситуациях бывает удобным разделять этот файл-конструктор на два отдельных файла: один отвечает за представление условий, другой – за ответы.

Следует отметить, что вид и тип учебной задачи естественно отражается на организации формы представления условий и ответов. Так, в некоторых случаях целесообразно формулировать условие в параметрической форме, тогда варианты задания будут представлены таблицей параметров и таблицей ответов к ним. Иногда в условии приводится графический объект (график функции), тогда варианты заданий определяются соответствующими графиками условий и графиками (или числами) ответов и т.д.

Объектная связь MS Word и MathCAD позволяет предложить следующий способ организации дидактических материалов. В doc-документ с помощью объектной связи вставляется кадр шаблона задания, и аналогичным способом – кадр ответов и подсказок из файла ответов в новом окне (блок формирования дидактических материалов на основе объектной связи).

Файл-решатель создается обычно для реализации типового решения рассматриваемой учебной задачи. Имея естественную математическую нотацию, такие файлы позволяют создавать "живые" решения заданий и методические указания к ним. При этом считывание данных для условия производится автоматически из файла данных.

Описанная дидактическая гипертекстовая системы электронных учебных материалов размещается в локальной сети компьютерного класса или на Web-сервере. Для создания таких электронных дидактических систем нами разработана модель конструирования учебных материалов с использованием математической инструментальной среды MathCAD (рис.1), кроме того, исследуется возможность формирования профессионально значимых качеств учителя в процессе обучения этой технологии и её применения в педагогической практике.

Анализ работ по теории конструирования электронных учебных ресурсов позволяет сделать вывод о том, что модель конструирования электронных учебных материалов должна отражать дидактические свойства программных инструментальных сред, инвариантные структурные единицы электронных учебных материалов, типы электронных учебных материалов и процедуру их конструирования. В результате её реализации формируется дидактическая гипертекстовая система ЭУМ, в которой для достижения поставленных целей обучения интегрируются в единый программный продукт файлы-документы разнообразных типов и функций.


Рис. 1. Модель конструирования электронных учебных материалов средствами МИС

Модель конструирования гипертекстовой системы ЭУМ имеет многокомпонентную структуру, включающую этапы конструирования, типы ресурсов системы ЭУМ, виды документов, входящих в её состав, а также типовые структурные единицы, из которых состоят сами документы.

На этапе определения учебных целей мы отвечаем на вопросы о том, зачем создавать электронные учебные материалы, каких целей мы хотим достичь, действительно ли их можно достичь с использованием ЭУМ. На данном этапе перечисляются действия, демонстрирующие формируемые умения (знания); детализируются знания, умения, навыки, позволяющие выполнить это действие. Цели обучения являются инструментами, которые используются при отборе содержания, выборе дидактических приемов реализации, определении результативности разрабатываемых учебных материалов.

В процессе отбора содержания гипертекстовой комплекса ЭУМ следует руководствоваться нормативными документами: государственными образовательными стандартами, учебными программами по дисциплине, списками литературы, приводимыми в них. Отбор содержания должен проводиться на основе принципов обучения. Состав отобранного учебного материала и связи между единицами материала (учебными элементами) наглядно могут быть представлены в виде структурно-логической схемы.

В процессе разработки сценария ЭУМ формируется план конструирования и применения ЭУМ, определяется их тип (учебное пособие, локальная сетевая или дистанционная лабораторная работа, электронный урок, фрагмент урока, способ объединения в гипертекстовую систему ЭУМ), состав и внешний вид типовых структурных единиц (блока содержания, теоретических разделов, демонстрационных блоков, тренажеров и блоков генерации параметров, блоков обратной связи, типовых программных блоков), расположение их в файлах-документах программ MathCAD, Excel, Word. Результатом этапа разработки ЭУМ является законченный рабочий сценарий в виде словесного описания или блок-схемы. На этапе определения типов тренировочных и контрольных заданий выбирается форма заданий: вопросы, упражнения, задачи, различные виды тестов, поисково-исследовательские задания и др. На этапе создания файлов генерации параметров выполняется параметризация заданий и выписываются генерационные формулы. На их основе конструируется файл-генератор параметров для автоматизированного создания нужного количества однотипных заданий. В процессе пересчета документа-генератора происходит генерация параметров и запись в файл сохранения параметров.

Далее формируется банк данных индивидуальных учебных заданий, который может включать карточки сгенерированных индивидуальных заданий в электронном (документы Word, MathCAD) или бумажном виде. Создание файлов-шаблонов заданий (карточек заданий) выполняется на основе файлов генерации параметров, в структуре которого представлены блоки условий заданий в параметрической форме и блоки параметров, а при пересчете происходит добавление параметров задания с учетом номера его варианта в файл сохранения параметров.

На этапе интеграции компонентов в гипертекстовую систему ЭУМ связываются при помощи гиперссылок и объектных связей отдельные ЭУМ, файлы, реализующие учебные задачи освоения теоретических знаний, файлы-документы MathCAD поддержки решения математических задач, файлы-документы MathCAD автоматизированной генерации учебных заданий, файлы-документы Word карточек заданий в параметрической форме, документы Excel сохранения параметров и ответов. На этапе апробации и корректировки построенной гипертекстовой системы ЭУМ в процессе ее использования выявляются и исправляются погрешности, допущенные на предыдущих этапах.

В процессе освоения и применения такой технологии формируются не только навыки владения программными средствами, но профессионально-педагогические умения. В связи с этим возникает проблема формирования соответствующей модели обучения студентов физико-математических педагогических специальностей конструированию ЭУМ, ориентированной на формирование профессионально-значимых умений и навыков.

Обучение студентов использованию математических инструментальных сред продолжается на протяжении всего процесса обучения в вузе, начинаясь изучением системы MathCAD в курсе программного обеспечения и завершаясь их применением для создания собственных учебных программных средств. Одним из этапов этого процесса является подготовка будущих педагогов к созданию электронных учебных материалов, ориентированная на формирование профессиональной компетентности учителя. Организационно обучение предложенной технологии происходит в рамках курса «Математические пакеты в естественно-научном образовании».

При построении структуры указанного курса, как основного компонента процесса изучения конструирования ЭУМ, необходимо определить цели, содержание, формы, методы и средства обучения, сформулировать задачи и функции компьютерной поддержки, разработать соответствующие электронные ресурсы. В нашем исследовании это комплекс тематических лабораторных работ.

Общие цели обучения конструированию электронных учебных материалов на основе МИС MathCAD: формирование представлений об этапах педагогического проектирования и конструирования электронных учебных материалов; овладение практическими навыками работы в МИС MathCAD; овладение практическими навыками конструирования ЭУМ; реализация компетентностного подхода в обучении. Конкретные цели представляют собой совокупность основных знаний и умений по учебному предмету.

Содержание учебного курса по технологии конструирования электронных учебных материалов отбиралось исходя из поставленных целей. Использовались формы обучения: лекция (объяснительно-иллюстративная, проблемная, частично-поисковая); практические занятия; самостоятельная работа; консультации; различные виды контроля; применялись общедидактические методы (словесные, практические, наглядные, объяснительно-иллюстративные, репродуктивные, частично-поисковые, исследовательские, работа с литературой) и частнодидактические (метод открытых программ, метод демонстрационных примеров, метод интерактивных динамических моделей, метод проектов).

В качестве дидактического обеспечения процесса обучения технологии конструирования ЭУМ разработан программно-методический комплекс (ПМК), включающий в себя учебно-методическое пособие и систему электронных учебных материалов с демонстрационным прототипом электронной лабораторной работы по теме «Преобразования графиков функций»; электронные лабораторные работы по темам «Производная», «Интеграл», «Логика», электронную лабораторную работу, описывающую полную ориентировочную систему действий при создании электронных учебных материалов; набор демонстрационных файлов-документов MathCAD, используемых в обучении на разных этапах конструирования: этапе создания файлов генерации и тестовых заданий; электронные лабораторные работы, созданные студентами.