Смекни!
smekni.com

Электронные и микроэлектронные приборы (стр. 9 из 10)

В цифровых ИМС практическое применение получили полевые транзисторы с оксидным диэлектриком, образующие контакт металл–оксид–полупроводник (КМОП). На рисунке 2 приведена принципиальная схема элемента ИЛИ–НЕ на два входа, содержащая один нагрузочный (VT3) и два логических (VT1 и VT2) транзистора.

U и.п. VT3 F (Выход) VT1 B (Вход 2)
А (Вход 1) VT2 А 1 В F=A+B

Рис. 3

Таблица 11

А

В

F

0

0

1

1

0

0

0

1

0

1

1

0

На рисунке 3 приведена схема логического элемента ИЛИ-НЕ. Она состоит из двух логических VT1, VT2 и одного нагрузочного VT3 транзисторов. Принцип работы (таб.1) заключается в следующем:

При подаче на оба логических транзистора (входы А и В) логического 0 они остаются закрытыми (IИС=0). Сопротивление перехода для Iи.п. велико, поэтому ток источника питания протекает через VT3 на выход схемы (контакт F) формируя уровень логической 1. При подаче хотя бы на один из входов логической 1 транзистор открывается, сопротивление перехода падает Iи.п. протекает на корпус тем самым на выходе схемы формируется уровень логического 0.

Элементы КМОП-логики нашли широкое применение в микросхемотехнике. На базе этих элементов строятся дешифраторы, триггеры, счетчики, регистры, сумматоры, умножители, элементы ПЗУ и т. д и т.п.

4. Принцип действия и устройство тетрода

Развитие техники радиоприема, связанное с необходимостью усиления напряжений высокой частоты, выявило один из основ­ных недостатков триода. Было замечено, что усилители на трио­дах, предназначенные для этой цели, работают неустойчиво и не обеспечивают надежного усиления.

Исследования показали, что причиной этого является нали­чие значительной емкости между электродами лампы. Вопрос этот очень важен, поэтому на нем стоит остановиться подробнее.

Между любыми двумя проводниками, не соприкасающимися друг с другом, существует электрическая емкость.

Две металлические пластины, разделенные промежутком, об­разуют конденсатор. Конденсатор, включенный в электрическую цепь, создает непреодолимое препятствие для постоянного тока, но для переменного тока представляет лишь некоторое сопротив­ление. Чем больше емкость конденсатора и чем выше частота пе­ременного тока, тем меньшее сопротивление представляет кон­денсатор его прохождению. Как мы уже видели, внутри лампы можно различить три такие емкости: между сеткой и катодом, между сеткой и анодом и между анодом и катодом. Анализ ра­боты лампы показывает, что наиболее вредна емкость между анодом и сеткой, обозначаемая обычно СAC.

Вредное действие этой емкости можно понять, посмотрев на наши рисунки. Предположим, что лампа должна усиливать на­пряжение не звуковой, а высокой частоты. На сетку лампы по­ступают слабые электрические колебания Uвх. Усиленные колеба­ния этой же частоты, но с напряжением Uвых выделяются на анодной нагрузке. Если между анодом лампы и ее сеткой есть емкость Оде, то через нее часть усиленного переменного напряжения будет передана из анодной цепи обратно в сеточную. Это напряжение добавится к основному сигналу, действующему в .цепи сетки. Напряжение сигнала на входе как бы возрастает, вследствие чего увеличивается и напряжение, выделяющееся на анодной нагрузке. Это в свою очередь приведет к передаче через емкость анод — сетка в сеточную цепь еще большего напряже­ния и т. д. В результате работа лампы становится неустойчивой, может возникнуть самовозбуждение и лампа из усилителя коле­баний превратится в генератор, т. е. в самостоятельный источник

колебаний. Возникновение в усилителе самовозбуждения про­является в виде сильных искажений и свиста.

Опасность неустойчивой работы усилителя будет тем больше, чем выше частота переменного тока (тем меньшее сопротивление представляет для него емкость) и чем больше усиление лампы. Это обстоятельство создало весьма серьезные затруднения

при­ему и усилению слабых сигналов высокой частоты и заставило искать способы борьбы с вредным влиянием емкости сетка — анод трехэлектродной лампы.

Физика знает способы уменьшения емкости между двумя проводниками. Такими способами, например, является уменьше­ние размеров проводников,. образующих конденсатор, и увеличе­ние расстояния между ними. Эти способы применялись при кон­струировании триодов, но значительного эффекта они не дали, потому что чрезмерно уменьшать электроды по ряду соображе­ний нельзя (например, уменьшение размеров анода приводит к необходимости снизить анодный токи, следовательно, все пара­метры лампы), а увеличению расстояний между электродами кладут предел размеры лампы и ряд других причин.

Наиболее удобным и легче всего осуществимым способом уменьшения емкости, оказалось экранирование.

Сущность этого способа можно пояснить 'следующим приме­ром. Пусть имеется цепь из конденсатора, источника переменного напряжения и измерительного прибора. В такой цепи будет течь ток, величину которого отметит измерительный прибор.

Поместим теперь между пластинами конденсатора еще одну пластину и присоединим ее к нашей схеме в точке б. Когда это мы сделаем, то заметим, что стрелка прибора установилась на нуле: тока в цепи прибора не стало.

Объясняется это тем, что ток теперь потечет по другому, бо­лее короткому пути — через емкость между левой и средней пластинами и далее *по проводу а—б. Путь переменного тока