Смекни!
smekni.com

Защита салона автомобиля от съема информации (стр. 3 из 8)

· портативная аппаратура звукозаписи (малогабаритные диктофоны, магнитофоны и устройства записи на основе цифровой схемотехники);

· направленные микрофоны;

· электронные стетоскопы;

· электронные устройства перехвата речевой информации (закладные устройства) с датчиками микрофонного и контактного типов с передачей перехваченной информации по радио, оптическому (в инфракрасном диапазоне длин волн) и ультразвуковому каналам;

· оптико-электронные акустические системы и т.д.

Портативная аппаратура звукозаписи и закладные устройства с датчиками микрофонного типа (преобразователями акустических сигналов, распространяющихся в воздушной и газовой средах) могут быть установлены при неконтролируемом пребывании физических лиц («агентов») непосредственно в салоне автомобиля. Данная аппаратура обеспечивает хорошую регистрацию речи средней громкости.

Электронные стетоскопы и закладные устройства с датчиками контактного типа позволяют перехватывать речевую информацию без физического доступа «агентов» в салон автомобиля. Для этого они могут быть установлены на стеклах. Но здесь возникает проблема возможного обнаружения стетоскопа владельцем автомобиля.

Применение для ведения разведки направленных микрофонов и оптико-электронных (лазерных) акустических систем не требует проникновения «агентов» не только в салон автомобиля, но и также не требует контакта с автомобилем вообще. Разведка может вестись из соседних зданий или автомашин, находящихся в отдалении.

С использованием направленных микрофонов возможен перехват речевой информации из салона при наличии открытых стекол в условиях города (на фоне транспортных шумов) на расстояниях до 50 м [2].

Максимальная дальность разведки с использованием оптико-электронных (лазерных) акустических систем, снимающих информацию со стекол, составляет 150…200 метров в городских условиях (наличие интенсивных акустических помех, запыленность атмосферы) и до 500 м в загородных условиях 3].

Использование микрофонов с передачей информации по оптическому каналу я считаю не целесообразным, т. к. для перехвата информации необходима тонкая настройка передатчика и приемника. А это будет невозможным при использовании в городских условиях.

Для снижения разборчивости речи необходимо стремиться уменьшить отношение «уровень речевого сигнала/уровень шума» (сигнал/шум) в местах возможного размещения датчиков аппаратуры акустической разведки. Уменьшение отношения сигнал/шум возможно путем или уменьшения (ослабления) уровня речевого сигнала (пассивные методы защиты), или увеличения уровня шума (создания акустических и вибрационных помех) (активные методы защиты). К пассивным методам защиты я также отнесу электромагнитное экранирование салона автомобиля, для исключения использования микрофонов с передачей информации по радиоканалу, высокочастотного навязывания и т.п.

3.1 Пассивные методы защиты

3.1.2 Электромагнитное экранирование

Под экранированием понимается локализация электрического, электромагнитного полей в определенной части пространства и более или менее полное освобождение от него остальной среды. Экранирование позволяет защитить как радиоэлектронные приборы от воздействия внешних полей, так и локализовать их собственные излучения, препятствуя их появлению в окружающем пространстве.

В результате становится практически невозможным несанкционированный съем информации по техническим каналам (к которым относится канал побочных электромагнитных излучений и наводок, электроакустический канал, радиоканал и т.д.).

Таким образом оно позволяет снизить эффективность использования злоумышленником микрофонов с передачей информации по радиоканалу, высокочастотного «навязывания» и др. средств съема информации.

Эффективность действия электромагнитного экрана характеризуется коэффициентом экранирования[4]:

,
(3.1)
,
(3.2)

где

- коэффициент экранирования электрической составляющей;

- коэффициент экранирования магнитной составляющей;

- напряженность электрического поля в какой-либо точке при наличии экрана;

- напряженность электрического поля при отсутствии экрана;

- напряженность магнитного поля в какой-либо точке при наличии экрана;

- напряженность магнитного поля при отсутствии экрана.

На практике действие экрана принято оценивать эффективностью экранирования, дБ,

(3.3)
(3.4)

Теоретическое решение задачи экранирования, определение значений напряженности полей в общем случае чрезвычайно затруднительно, поэтому в зависимости от типа решаемой задачи представляется удобным рассматривать отдельные виды экранирования: электрическое, магнитостатическое и электромагнитное. Последнее является наиболее общим и часто применяемым, так как в большинстве случаев экранирования приходится иметь дело либо с переменными, либо с флуктуирующими и реже — действительно со статическими полями. На нем я и остановлюсь.

В общем случае эффективность экранирования можно представить в виде[4]:

,
(3.5)

где

- эффективность экранирования за счет поглощения энергии в толще материала;

- эффективность экранирования за счет отражения энергии от границ раздела внешняя среда – металл и металл – внешняя среда;

- эффективность отражения за счет многократных внутренних отражений для последующих составляющих волн.

Значения этих эффективностей можно вычислить по формулам[5]:

,
(3.6)

где

- толщина экрана;

- глубина проникновения – расстояние вдоль направления распространения волны, на котором амплитуда падающей волны уменьшается в e=2.71 раз.
,
(3.7)

где

- значения характеристических сопротивлений диэлектрика и металла.

Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в пределах которого расположен экран, и материала экрана. Чем больше это несоответствие, чем больше от­чаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования, определяемый отражением электромагнитных волн.

(3.8)

Электромагнитное экранирование основано на возникновении вихревых токов, которые ослабляют электромагнитное поле. Эффективность экранирования такого экрана в ближней зоне (зоне индукции) будет неодинакова для составляю­щих поля. Поэтому, как правило, для ближней зоны следует вычислять эффективность экранирования каж­дой из компонент поля в отдельности, принимая при этом, что в дальней зоне (зона излучения) эффективно­сти экранирования составляющих окажутся одинаковыми.

Физическая сущность электромагнитного экранирова­ния, рассматриваемая с точки зрения теории электро­магнитного поля и теории электрических цепей, сводит­ся к тому, что под действием источника электромагнит­ной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках - токи, поля кото­рых во внешнем пространстве по интенсивности близки к полю источника, а по направлению противоположны ему, и поэтому происходит взаимная компенсация полей.

Ниже приведены материалы, используемые при экранировании:

- металлические материалы (в том числе сеточные материалы и фольговые материалы);

- металлизация поверхностей;

- стекла с токопроводящим покрытием;

- специальные ткани;

- радиопоглощающие материалы;

- токопроводящие краски;

- электропроводный клей;

В таблице 3.1 приведены значения эффективности экранирования для реальных замкнутых экранов.