Смекни!
smekni.com

Разработка программно-методического комплекса для анализа линейных эквивалентных схем в частотной области для числа узлов <=500 (стр. 3 из 7)

В ЭВМ эта схема представляется в табличном виде на внутреннем языке.

Граф электрич. схем характеризуется некоторыми так называемыми топологическими мат-рицами, элементами которых являются (1, 0, -1). С помощью них можно написать независимую систему уравнений относительно токов и напряжений ветвей на основании законов Кирхгофа. Соединения ветвей с узлами описываются матрицей инциденции А . Число ее строк равно числу узлов L, а число столбцов - числу ветвей b. Каждый элемент матрицы a(i, j):

ì -1 - i-я ветвь входит в j-й узел,

a(i, j) = í 1 - i-я ветвь выходит из j-го узла,

î 0 - не соединена с j-м узлом.

Легко видеть, что одна строка матрицы линейно зависит от всех остальных, ее обычно исключают из матрицы, и вновь полученную матрицу называют матрицей узлов А. Закон Кирхгофа для токов с помощью этой матрицы можно записать в виде:

А * i = 0, где i - вектор, состоящий из токов ветвей.

Для описания графа схемы используют еще матрицы главных сечений и главных контуров. Сечением называется любое минимальное множество ветвей, при удалении которых граф распадается на 2 отдельных подграфа. Главным называется сечение, одна из ветвей которого есть ребро, а остальные - хорды. Главным контуром называется контур, образуемый при подключении хорды к дереву графа. Число главных сечений равно числу ребер, т.е. L-1, а число главных контуров - числу хорд m=(b-(L-1)). Матрицей главных сечений П называется матрица размерностью (L-1) * b, строки которой соответствуют главным сечениям, а столбцы - ветвям графа. Элементы матрицы a(i, j)=1, если j-я ветвь входит в i-е сечение в соответствии с направлением ориентации для сечения; a(i, j)=-1, если входит, но против ориентации, и a(i, j)=0, если не входит в сечение.

Закон Кирхгофа для токов можно выразить с помощью матрицы главных сечений.

Пi = 0

Матрицей главных контуров Г называется матрица размерностью (b-(L-1))*b, строки которой соответствуют главным контурам, а столбцы - ветвям графа. Элемент этой матрицы a(i, j)=1, если j-я ветвь входит в i-й контур в соответствии с направлением обхода по контуру, -1, если ветвь входит в контур против направления обхода, и 0, если ветвь не входит в контур.

Закон Кирхгофа для напряженй выражается с помощью матрицы главных контуров в виде:

Пи = 0

Располагая в матрицах П и Г сначала столбцы, соответствующие ветвям-ребрам, а затем столбцы, соответствующие ветвям- хордам, можно записать:

П = [E, Пх] Г = [Гр, Е]

где Пх содержит столбцы, соответствующие хордам; матрица Гр - столбцы, соответствующие ребрам, а Е - единичные матрицы [размерность матрицы Е, входящей в П, (L-1)*(L-1), а входящей в Г, (b-(L-1))*(b-(L-1))].

Матрицы Гр и Пх связаны следующим соотношением:

Гр=-Пxт , где т - знак транспонирования матрицы, или, обозначая Гр=F, получаем Пх=-Fт.

Если для расчета электрической схемы за искомые переменные принять токи i и напряжения u ветвей, то уравнения:

Ai = 0 или Пi = 0

Гu = 0 Гu = 0

совместно с компонентами уравнений:

Fj(I,U,dI/dt,dU/dt,x,dX/dt,t)=0

составят полную систему уравнений относительно 2b переменных.

То есть полная система в общем случае представляет собой набор обыкновенных линейных дифференциальных уравнений.(в случае линейных схем)

Число переменных и уравнений можно уменьшить следующим образом. Токи ребер Ip и напряжения хорд Ux можно выразить через токи хорд Ix и напряжения ребер Up:

Ip= F * Ix Ux = -Fu

Если подставить эти уравнения в уравнение:

Fj(I,U,dI/dt,dU/dt,x,dX/dt,t)=0

то число уравнений и переменных можно уменьшить до числа ветвей b.

Обозначения: L - число вершин (узлов),

b - число ветвей,

p - число ребер,

m - число хорд.

Для связного графа справедливы следующие отношения:

p = L - 1 m = b - (L-1)

хорда - ребро, не вошедшее в дерево.

Оценим эффективность использования вышеописанных матриц описания схем с точки зрения размерности, для ЭВМ это проблема экономии памяти.

Пусть имеем: число вершин (узлов) L = 500,

число ветвей b = 1000.

Оценим размеры матриц:

Инцидентности:

L * b = 500 * 1000 = 500000

Главных сечений:

(L-1) * b = p * b = 499 * 1000 = 499000

Главных контуров:

(b-(L-1)) * b = (b-p) * b = (1000-(500-1)) * 1000 = (1000-499) * 1000= 501000

Из вышеприведенных нехитрых вычислений следует, что для описания схемы выгоднее использовать матрицу главных сечений.

2 - Эквив.схема преобразуется в программу решения линейных дифференциальных уравнений.

Для решения таких систем необходимо организовать иттерационный процесс, решая на каждом шаге иттераций систему линейных уравнений.

Схема организации вычислит. процесса:


Ввод исходной информации


Трансляция исходной информации.

Заполнение массивов в соответствии с

внутр. формой представления данных


Построение матем. модели схемы


Решение системы линейных уравнений


Обработка и выдача результатов

Задачи:

1. Получить АЧХ, ФЧХ (АФЧХ) решением системы дифф. уравнений

2. Построить характеристики по АЧХ и ФЧХ

Построение модели эквивалентной схемы.

Модель схемы может быть построена в одном из 4-х координатных базисов:

1. ОКБ - однородный координатный базис

2. РОКБ - расширенный однородный координатный базис

3. СГКБ - сокращенный гибридный координатный базис

4. ПГКБ - полный гибридный координатный базис

1) Модель представляет собой систему алгебро-интегро-дифференциальных уравнений. Неизвестные величины - напряжения U в узлах.

2) Система обыкновенных дифф. уравнений первого порядка, в неявной форме.

Неизвестные величины:

Uс

Il

3) Модель - система обыкновенных дифф. уравнений в форме Коши (в явной форме). Неизвестные величины:

Uc

Il

4) Теоретически существует, но на практике не используется, так как он избыточен. Неизвестные величины:

U

I

Для построения модели используются:

1) МУП - метод узловых потенциалов

2) ММУП - модифицированный МУП

3) МПС - метод переменных состояния

1) ОКБ

Используются следующие матрицы:

С G L Y


На нулевом шаге все матрицы и векторы заполнены нулями.

Рассмотрим следующий элемент:

i j

В матрице С рассматриваются i, j строки и столбцы.

i j

i C - C

j - C C

C

При совпадении индексов элемент в матицу включается со знаком “+”, а при несовпадении - со знаком “-”. В матрицу могут быть включены 4 или 1 элемент.


Рассмотрим следующий элемент: i j

i j

i Y -Y

j -Y Y

G

Принцип построения аналогичен матрице С.

Рассмотрим следующий элемент: i j

i j

i 1/L -1/L