Смекни!
smekni.com

Многоэтажное производственное здание (стр. 2 из 9)

Полная погонная расчетная нагрузка на ригель перекрытия:

Pпер=Pgпер+PVпер=31.8876+94.5400=126.428 кН/м.

2.1.3 Уточнение размеров элементов рамы

1. Определение размеров сечения ригеля.

Для уточнения предварительно принятых размеров сечения ригеля вычисляется требуемая высота на основании упрощенного расчета. Опорный момент приближенно принимаем равным: М=(0,6…0,7)*М0, где М0пер*L2/8–изгибающий момент в ригеле, вычисленный как для однопролетной балки.

М0=126.428*6.42/8=647.309 кН*м.

М=0,7*647.309=453.117 кН*м.

Примем бетон ригеля марки B25, с расчетным сопротивлением сжатию: Rb=14.5 МПа, тогда рабочая высота ригеля:

h0=

=(453.117/(0.2888*14.5*0.3*1000))0,5=0.6006 м=60.06 см,

где А0оптопт*(1-0,5*ξопт)=0.35*(1-0,5*0.35)=0.2888 м2.

Высота ригеля: hр=h0+as=60.06+7=67.06 см.

Принимаем ригель высотой hр=70 см и шириной bр=30 см из бетона класса B25 (Рис. 2.2.)

Рис. 2.2. Поперечное сечение ригеля.

2. Определение размеров сечения колонн.

Нагрузка на среднюю и крайнюю колонны нижнего этажа:

Nср=Pпок*L+Pпер*L*(nэт-1)=44.564*6.4+126.428*6.4*(6-1)=4330.891 кН;

Nкр=Nср/2=4330.891/2=2165.445 кН.

Примем бетон средней колонны марки B30, с расчетным сопротивлением сжатию Rb=17 МПа, крайней – B30 (Rb=17 МПа) тогда требуемая площадь сечения средней и крайней колонн нижнего этажа:

Асртр=(1,1…1,5)*Nср/(γb2*Rb)=1.1*4330.891/0.9*17=3113.712 см2;

Акртр=(1,1…1,5)*Nкр/(γb2*Rb)=1.1*2165.445*10/0.9*17=1556.856 см2.

Задаемся шириной колонны bcol=40 см, тогда требуемая высота сечения колонн нижнего этажа:

hср сolтрсртр/bcol=3113.712/40=77.84 см;

hкр сolтркртр/bcol=1556.856/40=38.92 см.

Учитывая, что кроме бетона нагрузку воспринимает арматура, примем следующие сечения колонн:

- средних – bср col*hср сol=400*600 мм из бетона класса B30.

- крайних – bкр col*hкр сol=400*400 мм из бетона класса B30.

Расчетные пролеты ригелей (расстояния между осями колонн):

- в крайних пролетах l01=L-hкр сol/2=6400-400/2=6200 мм;

- в средних пролетах l02=L=6400 мм.

2.1.4 Определение жесткостей элементов рамы

Длину стоек, вводимых в расчет, принимаем равной высоте этажа hэт=3.3 м.

Средняя расчетная длина ригелей:

l0=(l01+l02)/2=(6200+6400)/2=6300 мм=6.3 м.


Расстояние от центра тяжести сечения до нижней грани сечения ригеля:

y=S/Ap=0.090/0.286=0.3147м,

где Ap=bp*hp=0.3*0.7=0.286 м2.

S=bp*hp2/2+2*0,02*hпл*0,5*(hp-hпл+hпл/3)+2*0,17*0,1*(hp-hпл-0,05)+2*0,17*(hp-hпл-0,1)2*0,5*2/3=0.3*0.72/2+2*0,02*0.4*0,5*(0.7-0.4+0.4/3)+2*0,17*0,1*(0.7-0.4-0,05)+2*0,17*(0.7-0.4-0,1)2*0,5*2/3=0.090м3

статический момент относительно нижней грани сечения.

Определим жесткости ригеля (1), средних стоек (2) и крайних стоек (3), а также их соотношения.

1) Момент инерции сечения ригеля относительно центра тяжести:

Ip=bp*hp3/12+bp*hp*(hp/2-y)2=0.3*0.73/12+0.3*0.7*(0.7/2-0.3147)2=0.00884 м4.

Погонная жесткость ригеля (ригель из бетона класса B25, бетон подвергнут тепловой обработке, Eb=27000 МПа):

ip=Eb*Ip/l0=27*103*0.00884/6.3=37872кН*м.

2) Момент инерции сечения средней стойки:

Iсрs3=bсрcol*hсрcol3/12=0.4*0.63/12=0.0072 м4.

Погонная жесткость средних стоек (колонна из бетона класса B30, бетон подвергнут тепловой обработкеEb=29000 МПа):

i3s=i’3s=Eb*Iсрs3/hэт=29000*103*0.0072/3.3=63273кН*м.


Соотношение жесткостей:

η3=(i3s+1,5*i’3s)/ip=(63273+1,5*63273)/37872=4.177.

3) Момент инерции сечения крайней стойки:

Iкрs4=bкрcol*hкрcol3/12=0.4*0.43/12=0.00213 м4.

Погонная жесткость крайних стоек (колонна из бетона класса B30, бетон подвергнут тепловой обработкеEb=29000 МПа):

i4s=i’4s=Eb*Iкрs4/hэт=29000*103*0.00213/3.3=18747кН*м.

Соотношение жесткостей:

η4=(i4s+1,5*i’4s)/ip=(18747+1,5*18747)/37872=1.238.

2.2 Расчетная схема и статический расчет поперечной рамы

Расчетная схема поперечной рамы изображена на рис. 2.3.

Рис. 2.3. Расчетная схема поперечной рамы.

Статический расчет поперечной рамы проведем в программе RAMA2. Исходные данные для выполнения расчета сведены в таблицу 2.

Таблица 2.

Исходные данные для программы RAMA2.

Величина l01 l02 Pgпер PVпер η3 η4
Обозначение в программе L01 L02 Pgпер Pvпер K1 K2
Значение 6.2000 6.4000 30,6830 94.5400 4.1770 1.2380

╔═══════════════════════════════════════════════════════════════════════╗

║ Исходные данные ║

╠═══════════╦═══════════╦═══════════╦═══════════╦═══════════╦═══════════╣

║ L01 ║ L02 ║ Pgper ║ Pvper ║ K1 ║ K2 ║

║ [м] ║ [м] ║ [кН/м] ║ [кН/м] ║ ║ ║

╠═══════════╬═══════════╬═══════════╬═══════════╬═══════════╬═══════════╣

║ 6.2000║ 6.4000║ 30.6830║ 94.5400║ 4.1770║ 1.2380║

╚═══════════╩═══════════╩═══════════╩═══════════╩═══════════╩═══════════╝

╔═════════════════════════════════════════════════════════════════════╗

║ Изгибающие моменты в ригеле [кН/м] ║

╠═════╦═══════╦═══════╦═══════╦═══════╦═══════╦═══════╦═══════╦═══════╣

║ ║ M A ║ M1 ║ M2 ║ M3 ║ M BL ║ M BP ║ M4 ║ M5 ║

╠═════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╣

║ 1+2 ║-370.04║ 84.93║ 239.04║ 92.31║-355.27║-195.84║ -78.01║ -38.74║

╠═════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╣

║ 1+3 ║ -57.79║ 12.03║ 8.15║ -69.46║-220.78║-386.36║ 94.49║ 254.78║

╠═════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╬═══════╣

║ 1+4 ║-307.31║ 95.20║ 196.87║ -2.31║-502.35║-497.22║ -16.36║ 143.93║

╚═════╩═══════╩═══════╩═══════╩═══════╩═══════╩═══════╩═══════╩═══════╝

╔═══════════════════════════════════════════════════════╗

║ Поперечные силы в ригеле [кН] ║

╠═════════════╦═════════════╦═════════════╦═════════════╣

║ Q A ║ Q BL ║ Q BP ║ Q CL ║

╠═════════════╬═════════════╬═════════════╬═════════════╣

║ 390.5728║ -385.8098║ 98.1856║ -98.1856║

╠═════════════╬═════════════╬═════════════╬═════════════╣

║ 68.8292║ -121.4054║ 400.7136║ -400.7136║

╠═════════════╬═════════════╬═════════════╬═════════════╣

║ 356.7342║ -356.7342║ 400.7136║ -400.7136║