Смекни!
smekni.com

Производство крупноразмерных изделий из газобетона (стр. 2 из 4)

Сульфатное вяжущее - обычный строительный гипс по ГОСТ 125 - 79 с добавкой 5% тонкомолотого (удельная поверхность 2000-3000 см2/г) кристаллического карбоната кальция, мрамора и т.п.

Фосфатное вяжущее - ортофосфорная кислота по ГОСТ 10678, частично нейтрализованная металлом (например, алюминиевой пудрой марки ПАП-1 или ПАП - 2) или оксидами металлов, например Al2O3, Cr2O3, Al(OH)3 и др. Наиболее легкие фосфатные ячеистые бетоны со средней плотностью менее 400 кг/м3 получают из смеси 30% ортофосфатной кислоты с алюминиевой пудрой, без каких-либо заполнителей. Более тяжелый и более прочный фосфатный ячеистый бетон содержит заполнители в виде корунда, шамота, отработанного катализатора ИМ-2201 и др.

При производстве автоклавных ячеистых бетонов возможно использование известково-цементных или золоцементных вяжущих, марка последних может быть невысокой, т.к. конечная прочность поробетона после автоклавной обработки на цементах различных марок практически одинакова.

Кремнеземистый компонент. В качестве кремнеземистого компонента используются: кварцевый песок, золы ТЭС, шлаки и др.

Основными показателями кремнеземистого компонента в составе смеси для производства ячеистых бетонов являются гранулометрический состав и содержание в нем нежелательных примесей (пылевидных и глинистых частиц). В кварцевом песке не допускается наличие зерен более 10 мм в количестве свыше 0,5%, а более 5 мм - свыше 10% по массе. Количество частиц менее 0,16 мм не должно превышать 10 и 15 % соответственно для крупных и мелких песков. Содержание пылевидных (менее 0,5 мм) и глинистых (менее 0,005 мм) частиц не должно превышать 3-5 %.

Применяемый в изготовлении изделий из ячеистого бетона кремнеземосодержащий компонент — кварцевый песок — согласно ГОСТ 8736 - 93 "Песок для строительных работ. ТУ" должен содержать не менее 75% свободного кварца, не более 3% илистых и глинистых примесей и не более 0,5% слюды. При модуле крупности песка не более 1,5 и содержании в нем глинистых примесей менее 7% можно использовать его для изготовления стеновых камней, исключая сушку песка и его совместный помол с цементом.

Для обеспечения требуемой величины средней плотности удельная поверхность молотого песка должна составлять, см2/г:

1500-2000 при средней плотности 800 кг/м3;

2000-2300 при средней плотности 700 кг/м3;

2300-2700 при средней плотности 600 кг/м3;

2700-3000 при средней плотности 500 кг/м3.

Зола-унос от сжигания бурых и каменных углей также может использоваться в качестве кремнеземсодержащего компонента, должна иметь не менее 45% кремнезема, а величина потерь при прокаливании (ппп) в золе бурых углей не должна превышать 5% и в каменных углях -7%.

Также в качестве заполнителей применяют тонкодисперсные вторичные продукты обогащения руд, содержащие SiO2 не менее 60%, железистых минералов не более 20%, сернистых соединений, в пересчете на SO3, не более 2%, едкой щелочи, в пересчете на Na2O, не более 2%, , пылевидных и глинистых частиц не более 3%, слюды не более 0,5%.

Плотность шлама из грубомолотого песка должна быть не менее 1,6 кг/л, а из песка нормального помола (при вибрационном способе формования изделий) — 1,68 кг/л, из вторичных продуктов — 1,75... 1,8 кг/л.

В производстве ячеистых автоклавных изделий нередко используются кварцевый песок, зола-унос и другие кремнеземсодержащие сырьевые материалы с показателями ниже нормативных, причем узаконенными ведомственными или государственными документами. Так, например, ОСТ 34 - 70 - 542 - 81 допускает содержание в золе-уносе тепловых электростанций от 5 до 22 % остатка несгоревшего топлива (ппп). ГОСТ 25818 - 91 "Золы-уноса тепловых электростанций для бетонов. ТУ" допускает показатель ппп в золе, предназначенной для производства бетона, от 5 до 20 %, а в ГОСТ 25592 — 83 на смесь золошлаковую тепловых электростанций для бетона эта величина колеблется от 2 до 20 %.

В.Ф. Завадский предложил использовать для производства ячеистых бетонов неавтоклавного твердения вместо кварцевого песка альбитофировые породы в виде песков и пылей, получаемых при дроблении пород на щебень.

Альбитофировые горные породы относятся к группе кислых эффузивных пород щелочного ряда с вкраплениями и микролитами основной массы, представленными, главным образом, альбитом Na (AlSi3O8). Химический состав пород: SiO2 - 74...77 %; А12О3 - 10... 12 %; Fe2O3 - 0,9...1,8 %; R2O - 5...6 %; CaO - 0,5...0,7 %; ппп - 0,3... 0,5 %. Структура пород — порфировая.

Истинная плотность пород - 2,6 г/см3, насыпная плотность альбитофирового дисперсного порошка — 1,3... 1,45 т/м3, остаток на сите № 008 составляет для пылей из циклонов 10 — 12 %, порошка из отвалов - 20...25 % или остаток на сите № 02 - 5...7%. Удельная поверхность альбитофировых порошков по ПСХ - 4 колеблется в пределах 2000 – 3500 см2/г.

Специфика фазового и химического составов, а также высокая дисперсность альбитофировых порошков и микрошероховатость частичек определяют особенности реологических свойств литьевых шламов и поризованных масс на их основе и протекание процессов гидратации и твердения аньбитофировых поризованных масс с минеральным вяжущим веществом. Установлено, что при одинаковой величине средней плотности газобетона прочность альбитофировых бетонов на 20 — 25 % выше, чем бетонов на кварцевом песке.

Порообразователи. В технологии газобетонных изделий в качестве газообразователей главным образом используется алюминиевая пудра марок ПАП – 1 и ПАП - 2, отвечающая требованиям ГОСТ 5494 – 95 « Пудра алюминивая пигментная. ТУ" с содержанием активного алюминия 91,1 - 93,9 % и временем активного (максимума) газовыделения в течение 3 - 4 мин от начала смешивания компонентов газобетонной массы. К пудре предъявляются требования по дисперсности, т.к. с дисперсностью связан процесс протекания газообразования в ячеистобетонной смеси, которая составляет 4600 - 6000 см2/г. Максимальное выделение водорода происходит при температуре смеси 30 – 40 0С. Для получения водной алюминиевой суспензии используется сульфанол (алкилбензосульфат), обладающий свойствами ПАВ, из расчета 25 г на литр воды. Сульфанол должен удовлетворять требованиям ТУ 6 - 01- 1001 - 77.

В качестве газообразователя также применяют пергидроль Н2О2 газопасты ГБП и комплексный газообразователь, представляющий собойсмесь алюминиевой пудры и дисперсного ферросилиция.

При применении газопасты отпадает необходимость в поверхностно – активных веществах (ПАВ), она легко смачивается и перемешивается с водой, образуя хорошую суспензию, которая равномерно распределяется в бетонной массе без агрегатирования. При одинаковой общей пористости изделий средний размер пор в теле газобетона в 2 - 2,5 раза меньше, чем в изделиях на алюминиевой пудре. Отрицательным эффектом применения газопасты по сравнению с алюминиевой пудрой является удлинение сроков достижения пластической прочности на 15—30 мин.

У комплексного газообразователя каждый компонент смеси является газообразователем, но имеет собственную скорость образования массы газа и абсолютную массу полученного газа. Реакция взаимодействия ионов силиция со щелочными компонентами смеси протекает медленнее, чем ионов алюминия, а суммарная скорость образования массы водорода у комплексного газообразователя ниже, чем скорость образования той же массы газа у алюминиевой пудры. Ферросилиций в составе спучивающегося вещества назван газообразователем второго действия. Соотношение алюминиевой пудры ПАП-1 и дисперсного ферросилиция ФС – 75 находится в пределах от 1 : 4 до I : 1. Общий расход комплексного газообразователя 0,25 - 0,86 кг на 1 м3 ячеистого бетона плотностью 500 - 800 кг/м3.

В настоящее время в России существует много разновидностей пенообразователей как отечественного, так и зарубежного производства. К отечественным пенообразователям относят клееканифольный, алюмосульфонафтеновый, смолосапониновый, ПО—1, БелПор-1Ом, "Унипор", ПО - 6, ПБ - 2000, а к зарубежным "Неопор", "Диет", "Едама" и др., удовлетворяющие требованиям ГОСТ 6948 -81.

Клееканифольный пенообразователь приготовляют из мездрового или костного клея, канифоли и водного раствора едкого натра. Этот пенообразователь при длительном взбивании эмульсии дает большой объем устойчивой пены. Он несовместим с ускорителями твердения цемента кислотного характера, так как они вызывают свертывание клея. Хранят его не более 20 суток в условиях низкой положительной температуры.

Смолосапониновый пенообразователь приготовляют из мыльного корня и воды. Введение в него жидкого стекла в качестве стабилизатора увеличивает стойкость пены. Этот пенообразователь сохраняет свои свойства при нормальной температуре и относительной влажности воздуха около 1 месяца.

Алюмосульфонафтеновый пенообразователь получают из керосинового контакта, сернокислого глинозема и едкого натра. Он сохраняет свои свойства при положительной температуре до 6-ти месяцев.

Пенообразователь ГК готовят из гидролизованной боенской крови марки ПО-6 и сернокислого железа. Его можно применять с ускорителями твердения. Этот пенообразователь сохраняет свои свойства при нормальной температуре до 6-ти месяцев.

Расход клееканифольного пенообразователя составляет 8 — 12 %, смолосапонинового - 12... 16 %, алюмосульфонафтенового - 16...20 % и пенообразователя ГК - 4...6 % от расхода воды. Смесь из двух пенообразователей (например, ГК и эмульсии мыльного корня в соотношении 1:1) позволяет получить более устойчивую пену.

Доказано, что пенообразователи на основе природных органических продуктов (клееканифольный, сапониновый и др.) не всегда являются технически эффективными. Отечественные пенообразователи обладают рядом недостатков, так, к недостаткам сапонинового пенообразователя относятся: необходимость длительного взбивания пены, снижение пенообразующих свойств водного раствора пенообразователя со временем снижают эффективность его применения. Кроме того, работа с мыльным корнем, раздражающе действует на кожу, и особенно на слизистые оболочки, требует мер предосторожности. Положительными сторонами является использование одного вида сырья, простая технология, получение стойкой пены с большим выходом.