Смекни!
smekni.com

Применение противоморозных добавок в строительстве (стр. 3 из 4)

На сегодняшний день разработано множество видов и типоразмеров полимерных форм для изготовления бетонных декоративных облицовочных изделий размером от 20х20мм до 800х1800мм. Изделия, изготовленные по катышной технологии, имеют глянцевую прочную поверхность, вполне сопоставимую по качеству с полированной поверхностью мрамора (рис. 1). Все изделия изготавливаются лицом вниз, что дает возможность в разы повысить прочность рабочей поверхности изделий. Дело в том, что при воздействии вибрации на бетонную смесь, содержащую суперпластификатор С-3, происходит частичное перераспределение компонентов смеси по толщине изделия. Тяжелые частицы песка, перемещаясь к нижнему лицевому слою, выдавливают воздух и воду в верхние слои. При этом речь не идет о явном расслоении смеси, которая в принципе не допустима. Тем не менее, надо отметить, что при средней прочности бетонного изделия, к примеру 80МПа, на лицевом слое прочность может намного превышать этот показатель, что и показали результаты испытаний на истираемость.
Второй вопрос, связанный с получением высоких показателей прочности, оказался намного сложнее. При использование портландцемента марки 500 и стандартного песка, при твердении в нормальных условиях (термообработка полимерных форм исключена) необходимо было через 24 часа достичь прочности бетона на сжатие не менее 40 МПа, а уже в возрасте 14 суток – 100 МПа на сжатие и 10 МПа на растяжение при изгибе. Такая кинетика твердения бетона гарантировала качество изделий и устраняла брак при распалубке. Высокая конечная прочность на сжатие и особенно связанная с ней прочность на растяжение при изгибе открывала возможность создания тонких, толщиной до 3мм, изделий.
В качестве средства для решения этого вопроса мы применяли суперпластификатор С-3. Выбор был сделан не случайно – эта добавка и по настоящее время остается одной из самых эффективных пластификаторов. Результаты проведенных лабораторных и промышленных испытаний суперпластификатора С-3 показали, что оптимальным расходом добавки является 0,8% от массы цемента. При этом было установлено, что с увеличением расхода добавки выше рекомендованных 0,8%, эффективность добавки продолжает увеличиваться, однако при этом так же резко увеличивается и эффект воздухововлечения. При повышенных расходах добавки смесь «закипала» и, как следствие, этот процесс сопровождался резким снижением прочности. Необходимо отметить, что применение суперпластификатора С-3, даже в небольших дозировках произвело революционный переворот в стройиндустрии. Тем не менее многие ученые продолжали вести исследования, понимая, что потенциал С-3 намного выше и до конца не раскрыт.
Известно, что водопотребность портландцемента и его разновидностей при нормальной густоте находится в пределах В/Ц 0,24 – 0,30, однако теоретическое количество воды, требуемое для физико-химических процессов гидратации цемента и образования цементного камня в 2-3 раза ниже. Иными словами, большая часть воды идет для пластификации смеси, а не для процессов твердения. Поэтому мы можем предположить, что и В/Ц, равное 0,2, не является самым низким приделом для мелкозернистых бетонов.
Таким образом, была решена вторая основная задача по разработке технологии получения прочности бетона 100 МПа на рядовом портландцементе марки М400 с применением только суперпластификатора С-3. Другие физико-механические характеристики такого бетона также оказались очень высокие. Морозостойкость более F500, истираемость менее 0,4 , водопоглащение менее 3%. Надо отметить, что С-3 всегда способствует процессу воздухововлечения в бетон. И в нашем случае в структуре бетона также имелось достаточное количество мелких замкнутых сферических воздушных пор, однако на снижение прочности они не влияли. Более того, такое количество свободного резервного пространства дает возможность релаксировать напряжения в бетоне при замерзании механически связанной воды, а в сочетании с высокопрочным каркасом бетона является залогом высокой морозостойкости и долговечности, что и показали результаты испытаний.
Имея отработанную технологию получения глянцевой поверхности бетона в процессе его твердения, при физико-механических характеристиках, соответствующих самым прочным видам мрамора мы могли уверенно сказать: «Мрамор из бетона – это реальность». Самым важным моментом, по нашему мнению, является то, что задача производства искусственного мрамора из бетона была решена не любой ценой, а при очень жестких исходных данных. Еще раз подчеркнем: применялся портландцемент М500, стандартный песок и суперпластификатор С-3. Оборудование – бетоносмеситель принудительного действия и стандартная виброплощадка. И конечно такой подход к решению задачи был принят производственниками положительно.

Прозрачный бетон

Прозрачный бетон (названный журналом Time «самым поразительным изобретением, сделанным в 2004 году») является революционным продуктом, содержащим оптические волокна, позволяющие полоскам света проходить через монолитный бетон. Стена из бетонных блоков LiTraCon – последний экспонат выставки Liquid Stone. Г-н Лосонци рассказал о происхождении продукта, его разработке и применении в некоторых экспериментальных архитектурных конструкциях, в том числе при сооружении монумента «Дверь в Европу» (Europe Gate), который знаменовал собой вступление Венгрии в Европейский Союз.

Кроме того, в феврале 2006 года издательством Princeton Architectural Press будет выпущена книга о выставке.

Книга начинается серией статей известных ученых и практиков, в которых описывается вся история бетона. Антуан Пикон (Antoine Picon), профессор истории архитектуры и технологии Гарвардского Университета, пишет о происхождении бетона в широком контексте истории развития технологий. Соредактор Жан-Луи Коэн (Jean-Lois Cohen) анализирует вопрос о том, как различный подход французской и немецкой национальных строительных культур повлияла на разработку и производство европейского бетона. Г-н Адриан Форти (Adrian Forty), профессор истории архитектуры Бартлетской школы архитектуры, Лондон, пишет о том, что бетон следует рассматривать в большей мере как технологический, а не специальный материал, приводя примеры из истории Италии после Второй Мировой Войны. Г-н Режан Лего (Rejean Legault), архитектурный историк и профессор Квебекского Университета, Монреаль, прослеживает в своей статье современные явления в Северной Америке, которые изменили внешний вид бетона.

Вторая часть книги посвящена той тематике, которая была представлена на выставке Liquid Stone в Национальном Музее Строительства. Инженер-строитель по образованию и профессор Принстонского Университета Гай Норденсон (Guy Nordenson) характеризует бетонную конструкцию как декоративно-отделочный элемент. Архитекторы из Нью-Йорка Тод Вильямс (Tod Williams) и Билли Цинн (Billie Tsien), которые занимались дизайном выставки Liquid Stone, обращают внимание на широкий спектр возможных вариантов внешнего вида и отделки бетона. Куратор выставки Мартин Меллер (Martin Moeller) дискутирует по поводу удивительно моралистических аргументов, на которые ссылаются при обсуждении надлежащей формы бетона. И, наконец, Франц-Йозеф Ульм (Franz-Josef Ulm), профессор Отдела гражданских и природоохранных разработок Массачусетского Технологического Института, показывает удивительные новые направления в научных исследованиях, которые несомненно будут формировать будущий дизайн и строительство с использованием бетона.