Смекни!
smekni.com

180-квартирный жилой дом в г Тихорецке (стр. 7 из 21)

|ки |вания |сост.| A1 | A2 | A3 | Y | Z |стержня|опред.|вания |коэфф.=1 |0-нет,1-да |

|_____|______|_____|_____|_____|_____|_____|_____|_______|______|______|_________|_____________|

| 1 7 0 5 3 3 0 0 10 0 3 1 0 |

|______________________________________________________________________________________________|

Документ 3. Сечение.

|Номер| Тип |Размеры ( сечение стержней-см, толщина плиты(b)-м ) |

|стро-|сече- |_____________________________________________________|

| ки | ния | b(D) | h(D1) | b1 | h1 | b2 | h2 |

|_____|_______|________|________|________|________|________|________|

| 1 P0 0.65 0 0 0 0 0 |

|___________________________________________________________________|

Документ 10.Бетон.

____________________________________________________________________________________

|Номер|Класс|Вид |Марка | Коэф.условий | Случайный |Условия|Ширина раскрытия|

|стро-|бетон|бето|легкого|_______работы_______|экцентриситет|эксплуа|_____трещин_____|

| ки | |на |бетона | твер | KP1 | KP2 | EY | EZ |тации |Крат/мм |Длит/мм|

|_____|_____|____|_______|______|______|______|______|______|_______|________|_______|

| 1 B25 1 0 1 1 1 0 0 0 0.4 0.3 |

|____________________________________________________________________________________|

Документ 11. Арматура.

__________________________________________________________________________________

|Номер|Класс продольной | Класс |Коэф. |Коэффициент учета|Предельно | Кол-во |

|стро-|____арматуры_____|поперечной|работы |____сейсмики_____|допустимый |стержней |

| ки | по X | по Y | арматуры |арматур| МКР1 | МКР2 |диаметр(мм)| в углах |

|_____|________|________|__________|_______|________|________|___________|_сечения_|

| 1 A3 A3 A1 1 1 1 22 1 |

|__________________________________________________________________________________|

Требуемая площадь рабочей арматуры в элементах графически отображена на рис. 5.16 - 5.19.

Конструирование плиты фундамента

В результате расчетов определились сечение фундаментной плиты и ее армирование при заданной прочности материала. По итогам расчетов принято:

– толщина фундаментной плиты – 650 мм;

– бетон кл. В25;

– армирование - двойная сетка из арматуры А-III с шагом 200 мм, с усилением армирования в местах опирания вертикальных несущих конструкций и в местах, определенных расчетом.

Нижнее непрерывное армирование вдоль Х: Æ14 А-III шаг 200 мм.

Верхнее непрерывное армирование вдоль Х: Æ14 А-III шаг 200 мм.

Нижнее непрерывное армирование вдоль У: Æ14 А-III шаг 200 мм.

Верхнее непрерывное армирование вдоль У: Æ14 А-III шаг 200 мм.

Дополнительное армирование детально показано на листе КЖ

Проектное положение верхней арматуры обеспечивается применением поддерживающих каркасов.

Расчет лестничного марша

Временная нормативная нагрузка для лестниц жилого дома рн = 3 кН/м2, коэффициент надежности по нагрузке gf= 1,2; длительно действующая временная нагрузка рнld=1 кН/м2.

Расчетная нагрузка на 1 м длины марша:

= (3,6х1,2+3х1,2)х1,35 = 10,3 кН/м

Расчетный изгибающий момент в середине пролета марша:

Поперечная сила на опоре:

Предварительное назначение размеров сечения марша

Применительно к типовым заводским формам назначаем толщину плиты (по сечению между ступенями) h'f=30 мм, высоту ребер (косоуров) h=170 мм, толщину ребер br=80 мм (рисунок 6.1).

Рисунок 5.20 – Сечение лестничного марша


Действительное сечение марша заменяем на расчетное – тавровое с полкой в сжатой зоне.

Рисунок 5.21 – Расчетное сечение лестничного марша

b= 2br= 2 х 80 = 160 мм, ширину полки b'fпри отсутствии поперечных ребер принимаем не более b'f= 2(l/6) + b= 2(300/6)+16 = 116 см или b'f=12 h'f+ b=

= 12 х 3+16 = 52 см, принимаем за расчетное меньшее значение b'f= 52 см.

Расчет нормального сечения

По условию М ≤ Rbbx(h0-0,5x)+RscA's(h0-a') устанавливаем расчетный случай для таврового сечения (при x= h'f)

при M≤ Rbgb2b'fh'f(h0-0,5 h'f)

где Rb– расчетное сопротивление бетона осевому сжатию для 1-го предельного состояния, МПа;

gb2 – коэффициент надежности;

b'f- ширина полки, см;

h'f– толщина плиты, см;

h0 – рабочая высота сечения, см.

Нейтральная ось находится в полке 1330000<14,5(100)0,9х52х3(14,5-0,5х3)=2640000 Нм. Условие удовлетворяется, нейтральная ось проходит в полке; расчет арматуры выполняем по формулам для прямоугольных сечений шириной b'f= 52 см.

Вычисляем:

где: А0 – требуемая площадь арматуры;

М – расчетный изгибающий момент, Нсм;

γn– коэффициент надежности;

Rb– расчетное сопротивление бетона осевому сжатию, МПа;

gb2 – коэффициент условий работы;

b'f– ширина полки, см;

h0 – рабочая высота сечения, см.

по таблицам находим η=0,953; ξ=0,095

Тогда площадь сечения ненапрягаемой части арматуры в растянутой зоне сечения найдем по формуле:

где: М – расчетный изгибающий момент в середине пролета марша, Нсм;

γn– коэффициент надежности;

h0 – рабочая высота сечения, см.

Rs– расчетное сопротивление арматуры растяжению для первого предельного состояния, МПа;

,

принимаем 2Æ14А-II, Аs=3,08 см2 (-4,5% допустимо). При 2Æ16А-II, Аs=4,02 см2 (+25% значительный перерасход арматуры). В каждом ребре устанавливаем по одному плоскому каркасу К-1.

Расчет наклонного сечения на поперечную силу

Поперечная сила на опоре Qmax=17,8·0.95=17 кН. Вычисляем проекцию расчетного наклонного сечения на продольную ось:

где: φn=0;

(1+φn + φf)=1+ 0,175=1,175< 1,5;

В расчетном наклонном сечении Qb=Qsw=Q/2, а так как Qb=Bb/2, то

c=Bb/0,5Q=7,5·105.0,5·17000 = 88,3 см, что больше 2 h0 = 29 см. Тогда Qb=Bb/с = 7,5·105/29 = 25,9·103 Н = 25,9 кН, что больше Qmax=17 кН, следовательно, поперечная арматура по расчету не требуется.

В ¼ пролета назначаем из конструктивных соображений поперечные стержни диаметром 6 мм из стали класса А-I, шагом S=80 мм (не более h/2 = 170/2=85 мм), Аsw=0,283 см2, Rsw=175 МПа, для двух каркасов n=2, Аsw=0,566 см2; μω=0,566/16·8 = 0,0044; α = Еs/Eb= 2,1·105/2,7·104 = 7,75. В средней части ребер поперечную арматуру располагаем конструктивно с шагом 200 мм.

Проверяем прочность элемента по наклонной полосе между наклонными трещинами по формуле:

где φω1=1+5αμω= 1+5·7,75·0,0044 = 1,17

φb1= 1-0,01·14,5·0,9 = 0,87

условие соблюдается, прочность марша по наклонному сечению обеспечена.

Плиту марша армируют сеткой из стержней диаметром 4¸6 мм, расположенных с шагом 100¸300 мм. Плита монолитно связана со ступенями, которые армируют по конструктивным соображениям, и ее несущая способность с учетом работы ступеней вполне обеспечивается. Диаметр рабочей арматуры ступеней с учетом транспортных и монтажных воздействий назначают в зависимости от длины ступеней при lst=1¸1,4 м - Æ6 мм. Хомуты выполняют из арматуры диаметром 6 мм шагом 200 мм.

Расчет железобетонной площадочной плиты лестничного марша

Задание для проектирования

Рассчитать и сконструировать ребристую плиту лестничной площадки двухмаршевой лестницы. Ширина плиты 1350 мм, толщина 60 мм, ширина лестничной клетки в свету 3 м. Временная нормативная нагрузка 3кН/м2, коэффициент надежности по нагрузке γf= 1,2. Марки материалов принять: бетон класса В25, арматура каркасов из стали класса А-II, сетки из стали класса Вр-I.

Определение нагрузок

Собственный нормативный вес плиты при h'f=6 см gn=0,06·25000 = 1500 Н/м2, расчетный вес плиты g= 1500·1,1 = 1650 Н/м2, расчетный вес лобового ребра (за вычетом веса плиты)

q= (0,29·0,11+0,07·0,07)·1·25000·1,1 = 1000 Н/м

Расчетный вес крайнего пристенного ребра:

q= 0,14·0,09·1·2500·1,1= 350 Н/м

Временная расчетная нагрузка

р = 3·1,2 = 3,6 кН/м2

При расчете площадочной плиты рассматриваем отдельно полку, упруго заделанную в ребрах, лобовое ребро, на которое опираются марш и пристенное ребро, воспринимающее нагрузку от половины пролета полки плиты.

Расчет полки плиты

Полку плиты при отсутствии поперечных ребер рассчитывают как балочный элемент с частичным защемлением на опорах.

Расчетная схема плиты показана на рисунке 6.3.

Рисунок 5.22 – Расчетная схема плиты

Расчетный пролет равен расстоянию между ребрами 1,13 м.

При учете образования пластического шарнира изгибающий момент в пролете и на опоре определяют по формуле, учитывающей выравнивание моментов:

М = Мs= ql2/16 = 5250•1,132/16 = 420 Нм

где q= (g+p)b= (1650+3600)•1= 5250 Н/м; b= 1 м.

При b= 100 см и h0 = h– a= 6 – 2 = 4 см вычисляем

по таблицам определяем


η=0,981; ξ=0,019, тогда