Смекни!
smekni.com

Проект бульдозера ДЗ-24А на базе тягача Т-180 (стр. 2 из 4)

2.3 Тяговый расчет

Суммарное сопротивление движению бульдозера при копании и перемещению грунта по горизонтальной поверхности:

W = Wp+ W1f+ W2f+ Wпр + Wв,

где сопротивление резанию Wp= kpBh= 40 ∙ 3,64 = 145,6,

сопротивления перемещению базовой машины

W1f= Gбмf= 15275 ∙ 0,08 = 1222 Н

отвала W2f= Gбо μ = 2680 ∙ 0,5 = 1490 Н

призмы волочения Wпр = Vф1 μ1 γр = 30 ∙ 1900 ∙ 0,8 = 45600 Н

и грунта вверх по отвалу

Wв = Vф1 μ γр cos2 γ = 30 ∙ 1900 ∙ 0,5 ∙ cos2 55 = 9376,2Н

W= 57833,8 Н = 57,8 кН.

Фактический объем грунта, перемещаемый бульдозером в конце наполнения и при перемещении:

Vф = (15275 (0,6 − 0,08) – 2680 ∙ 0,5 − 3,64 ∙ 0,05 ∙ 40) / 1900 (0,8 + 0,5 ∙ cos2 55) = 3,2 м2.

2.4 Расчет на прочность

Первое расчетное положение. Внезапный упор в препятствие средней точкой отвала при движении по горизонтальной поверхности; цилиндры находятся в запертом положении.

Второе расчетное положение. В процессе заглубления отвала при одновременном движении вперед по горизонтальной поверхности трактор вывешивается на средней точке отвала; в цилиндрах развивается усилие, достаточное для опрокидывания базовой машины, относительно точки А.

Третье положение. В процессе заглубления отвала при одновременном движении вперед по горизонтальной поверхности трактор вывешивает на крайней точке отвала; в цилиндрах, развивается усилие достаточное для опрокидывание трактора относительно точки А.

Четвертое расчетное положение. В процессе выглубления отвала при одновременном движении вперед по горизонтальной поверхности трактор вывешивается на средней точке отвала; в цилиндрах развивается усилие, достаточное для опрокидывания трактора относительно точки В.

Пятое расчетное положение. В процессе выглубления отвала при одновременном движении вперед по горизонтальной поверхности трактор вывешивается на крайней точке отвала; в цилиндрах развивается усилие, достаточное для опрокидывания трактора относительно точки В.

Расчет сил, действующих на отвал, в каждом расчетном положении производят по формулам:

Коэффициент жесткости препятствия,

грунт 2-ой группы, С2 = 1 ∙ 15275 = 15275,

угол резания 55 градусов, то С 1 = 520

тогда Со = (С 1 ∙ С 2) / (С 1 + С 2) = (520 ∙ 15275) / (520 + 15275) = 520

Расчетное положение Горизонтальное усилие Вертикальное усилие Боковое усилье
Первое Py = Gсц φmax + V√ (Gб Со /g)
Второе Py = (Gб - Pz) φmax+ V√ (Gб Со /g) Pz = Gбм∙ (lA /(l + lc))
Третье Py = (Gб - Pz) φmax+ V√ (Gб Со /g) Pz = Gбм ∙ (lА /(l + +lc)) Pх =((Gб − Pz)∙ φmax∙В)/ (2 (lс + l))
Четвертое Py = (Gб + Pz) φmax+ V√ (Gб Со /g) Pz = − Gбм∙ (lв / lс)
Пятое Py = (Gб + Pz) φmax+ V√ (Gб Со /g) Pz = − Gбм∙ (lв / lс) Pх =((Gмб − Pz)∙ φmax∙В)/ 2 ∙ lс

1-е положение: Py = 208315,35 ∙ 0,8 + 4,85 √(18255/ 9,81) ∙ 520 = 275,4 кН.

2-е положение: Py = (21235 – 6583,8) ∙ 0,8 + 4,85 √ 1860,9 ∙ 520 = 97,1 кН,

Pz = 18255 (2,2/(3,9 + 2,2) = 6,6 кН.

3-е положение:Py = (21235 – 6583,8) ∙ 0,8 + 4,85 √ 1860,9 ∙ 520 = 97,1 кН,

Pz = 18255 (2,2/(3,9 + 2,2) = 6,6 кН,

Pх = ((21235 – 6,6) ∙ 0,8 ∙ 3,64) / (2 ∙ (2,2 + 3,9)) = 5,1 кН.

4-е положение: Py = (21235 + 6,6) ∙ 0,8 + 108793,1 = 125,8 кН,

Pz = − 18255 (2,34/ 3,9) = − 11 кН.

5-е положение: Py = (21235 + 6,6) ∙ 0,8 + 108793,1 = 125,8 кН,

Pz= − 18255 (2,34/ 3,9) = − 11 кН,

Pх = − (18255 ∙ 0,5) / 2 = −4,6 кН.

Усилие в гидроцилиндре:


Pг= (Pz∙ b − Py∙ а) / 2S = (6,6 ∙ 6,6 − 97,1 ∙ 1,5) / (2∙ 4,5) = − 11,34

Реакции в шарнире О':

R'z=(− Рх ∙ а − Рz ∙ сб + Рг ∙ l ∙ sinλ)/ l= (−5,1 ∙ 1,5 − 6,6 ∙ 5,2 − 11,34 ∙ 3,6 ∙ 0,7)/3,6 = = 19,5

R'y = (− Рх ∙b + Ру е − Рг lcosλ) / l= (− 5,1 ∙ 6,6 + 97,1 ∙ 2,7 +11,34 ∙ 3,6 ∙0,7) / 3,6 = = 97,9

Реакция в шарнире О'':

R''z= 2∙ Pг ∙ sinλ − Pz − R'z= 2 (−11,34) ∙ 0,7 − 6,6 − 19,5 = −41,98

R''y = Py − 2∙ Pгcosλ − R'y = 97,1 − 2∙ (−11,34)∙ 0,7 − 97,9 = 15,1

Для определения боковых реакций, действующих в шарнирах, необходимо рассмотреть усилие, действующие в плоскости рамы отвала.

А. Реакции в шарнирах от действия силы Ру

R'xPy= R''xPy= (▲p + ▲ip)/ hδ1 + (Py ξ1) / 2 h,

где ko = 0,15 ∙ l/h = 0,15 ∙ 3,6 / 6,6 = 0,08,

δ1 = (2/3 (1 − μ²) + ko (1 − 4/3 v)) = 2/3 ((1 − 0,5²) + 0,08 (1 − 4/3 ∙ 4,85)) = 0,94

l = 3,6 м, h = 6,6 м, v = 4,85, ξ 1 = 0,15, μ =0,5, Py = 97,1

p= − 1/3 (1+ k1 ∙ v) ξ1 ∙ l ∙ Py =− 1/3 (1+ 0,08 ∙ 4,85)∙0,15 ∙3,6 ∙97,1 =

= −21,5

Величина ▲ipзависит от соотношений между ξ и v:

а) при ξ1 < v


ip= ξ1∙ l ∙ ko ((0,5 − v)² / 2 + (((0,5 − ξ1) +(v (v− ξ1))/3v) ∙ ξ²1 +

+ (1+ ((v (v− ξ1)) /2μ) − ((v+ξ1) ∙ (v² − ξ²1) / 2v)) Py=

= 0,15∙3,6∙0,08 ((0,5 − 4,85)² /2 +(((0,5 − 0,15) +(4,85 (4,85− 0,15))/3∙4,85)∙0,15² + (1 + ((4,85 (4,85 − 0,15))/2∙ 0,5) − ((4,85+0,15) ∙ (4,85² − 0,15²) / 2∙ 4,85)) ∙ 97,1 = 34,7

R'xPy= R''xPy=(−21,5 + 34,7)/ (0,94 ∙ 6,6) + (97,1 ∙ 0,15) / (2 ∙ 6,6) = 3,2

Б. Реакции в шарнирах от действия сил Рг

R'xPг= R''xPг= 2 ((▲p +▲pi)/ (δ1 ∙ h) + (Pг ∙ ξ2 ∙ cosλ)/ 2h =

= 2 ((−21,5 + 34,7) / (0,94 ∙ 6,6) + (− 11,34 ∙ 0,15 ∙ 0,7)/ 2 ∙ 6,6 = 2

В. Реакция в шарнирах от действия силы Рх

Боковые реакции от силы Рх

R'xPх = R''xPх≈ (b /h) ∙ (Px/2) = (6,6 /6,6) / (5,1 /2) = 2,55

Суммарная реакции в шарнирах О' и О''

R'x= ∑ R'xPi= 3,2 +2 + 2,55= 7,75

R"x= ∑ R"xPi= 3,2 + 2+ 2,55 = 7,75

Г. Реакция в шарнирах от действия силы Ру

R'xPу = R''xPу = (▲p +▲pi)/ (δ1 ∙ h) + (Ру ∙ξ1) / 2 h =

= (− 21,5 + 34,7) /(0,94 ∙ 6,6) + (97,1 ∙ 0,15) / 2∙ 6,6 = 3,2

Д. Реакция в шарнирах от действия силы Рг cosλ


R'xPг= R''xPг= 2 ((▲p +▲pi)/ (δ1 ∙ h) + Рг cosλ / 2h) =

= 2 ((− 21,5 + 34,7) /(0,94 ∙ 6,6) + (− 11,34 ∙ 0,7)/ 2 ∙ 6,6) = 3

Е. Реакция в шарнирах от действия силы Рх

R'xPх= R''xPх= (Px ∙ b) / (2h) = (5,1 ∙ 6,6) / (2 ∙ 6,6) = 2,55

Суммарная реакция в шарнирах

R'x= ∑R'xPi= 3,2 + 3 + 2,55 =8,75 +7,75 =16,5

R"x= ∑R"xPi= 3,2 + 3 + 2,55 =8,75 + 7,75 = 16,5

2.5 Производительность при разработке грунта

П т = 3600 Vф / Тц, м3

Время цикла

Т ц = tpx + tох+ tов = 100 + 75 + 20 = 200 с.

П т = (3600 ∙ 3,2) / 3,3 = 3490,9 м3/ч.


3. Технический раздел

3.1 Организация и технология производства работ

Бульдозеры применяют для строительства земляного полотна автомобильных и железных дорог, сооружения плотин и дамб, рытья каналов и котлованов, засыпки траншей и ям, планировки строительных площадок, территорий и орошаемых полей, очистки дорог и аэродромов, подготовки трасс, валки деревьев, корчевке пней, срезке и уборке кустарников и мелколесья, уборке валунов и других работ.

Бульдозеры-рыхлители используют на этих же работах, но для рыхления промерзших грунтов и при разработке прочных и скальных грунтов.

Рабочий цикл бульдозера включает следующие операции: опускание отвала в требуемое положение, резание и набор грунта, перемещение грунта, укладка грунта, передвижение бульдозера в исходное положение.

Основной операцией цикла является резание и набор грунта. Ее осуществляют при прямолинейном движении бульдозера на первой передаче при угле резания 55–60° – на легких грунтах и планировочных работах и 45–55° – на плотных грунтах, применяя наиболее целесообразные способы срезания стружки в зависимости от категории грунтов и видов работ. Так, на планировочных работах при наборе грунта под уклон применяют способ постоянной толщины стружки (прямоугольный). На глинистых грунтах стружку срезают переменной толщины клиновым или гребенчатым способом. Последний способ срезания стружки применяют и при разработке супесчаных грунтов.

Для облегчения разработки плотных и мерзлых грунтов их рыхлят бульдозерами-рыхлителями. Рабочий их цикл состоит из следующих операций: опускание зубьев и их заглубление в грунт, рыхление грунта, выглубление зубьев рыхлителя и возвращение рыхлителя в исходное положение (холостой ход). Если при рыхлении и перемещении грунта используют бульдозеры-рыхлители, то сначала они разрыхляют грунт на определенном участке и работают по циклу рыхлителя, а затем перемещают его отвалом бульдозера.

Набор грунта ускоряется при движении бульдозера под уклон и при работе с острыми ножами. Наиболее целесообразный уклон 10–15°. Ножи следует переставлять или затачивать (если они уже переставлялись) через 400–600 ч работы на песчаных и через 1000–1200 ч – на глинистых грунтах.

Перемещение грунта к месту его укладки осуществляют на первой передаче бульдозера. На уклонах его скорость может быть повышена. При этом увеличивается и производительность бульдозеров. Так, при уклоне 10° производительность возрастает более чем на 30% по сравнению с производительностью бульдозера, перемещаемого грунт при нулевом уклоне.