Смекни!
smekni.com

Назначение и характеристика кривошипно-шатунного механизма двигателя Д–240 (стр. 2 из 3)

Для восстановления чугунных коленчатых валов разработано и внедрено два способа: постановка полуколец и пластинирование.Предел выносливости методом постановкой полуколец коленчатого вала такой же, как и нового (рисунок 1.3). Метод восстановления шеек валов пластинированием заключается в установке с последующим механическим креплением на шейках валов стальной холоднокатаной термообработанной полированной ленты, изготовленной из пружинистой стали типа 65Г (рисунок 1.2).

140°

Рисунок 1.2 - Схема восстановления шеек коленчатого вала пластинированием

Рисунок 1.3 - Схема восстановления шеек коленчатого вала двигателя ЗМЗ-53 приваркой стальных полуколец

При использовании данного метода можно существенно упростить технологический процесс и оснастку для восстановления валов, полностью исключить сварочно-термическое воздействие на вал, отказаться от шлифования и полирования восстановленных валов, в 4...5 раз сократить расход металла и в 3 раза повысить производительность процесса по сравнению с наплавкой. Метод успешно апробирован при восстановлении чугунных валов двигателей ЗМЗ-53 и ЗМЗ-24.


4 Проектирование технологического процесса восстановления коленчатого вала


При восстановлении коленчатых валов применяют маршрутную технологию. Примерная схема маршрутов 1...Ш восстановления стальных коленчатых валов представлена на рисунке 4.22

4.1 Обоснование способов восстановления. Выбор рационального способа восстановления

Известно, что изношенные поверхности деталей могут быть восстановлены, как правило, несколькими способами. Для обеспечения наилучших экономических показателей в каждом конкретном случае необходимо выбрать наиболее рациональный способ восстановления.

Выбор рационального способа восстановления зависит от конструктивно-технологических особенностей детали (формы и размера, материала и термообработки), от условий ее работы (характера нагрузки, рода и вида трения) и величины износа, а также стоимости восстановления.

Для учета всех этих факторов рекомендуется последовательно пользоваться тремя критериями:

- технологическим критерием или критерием применимости;

- критерием долговечности;

- технико-экономическим критерием (отношение себестоимости восстановления к коэффициенту долговечности).

Технологический критерий (критерий применимости) учитывает, с одной стороны, особенности подлежащих восстановлению поверхностей деталей, а с другой технологические возможности соответствующих способов восстановления.

На основании технологических характеристик способов восстановления, устанавливаются возможные способы восстановления различных поверхностей детали по технологическому критерию.

После отбора способов, которые могут быть применены для восстановления той или иной изношенной поверхности детали, исходя из технологических соображений, отбирают те из них, которые обеспечивают наибольший межремонтный ресурс этих поверхностей, т.е. удовлетворяют требуемому значению коэффициента долговечности.

Коэффициент долговечности в общем случае является функцией трех других компонентов: коэффициента износостойкости, коэффициента выносливости и коэффициента сцепляемости:

КД=f(КИ, КВ, КСЦ), (1)

где КИ – коэффициент износостойкости;

КВ – коэффициент выносливости;

КСЦ – коэффициент сцепляемости.

Численные значения коэффициентов-аргументов определяются на основании стендовых и эксплуатационных испытаний новых и восстановленных деталей. Коэффициент долговечности численно принимается равным значению того коэффициента, который имеет наименьшую величину. Из числа способов отработанных по технологическому критерию, к дальнейшему анализу принимаются те, которые обеспечивают коэффициент долговечности восстановленных поверхностей не менее 0,8.

При выборе способов восстановления применительно к деталям, не испытывающим в процессе работы значительных динамических и знакопеременных нагрузок, численное значение коэффициента долговечности определяется только численным значением коэффициента износостойкости.

Если установлено, что требуемому значению долговечности для данной поверхности детали удовлетворяют два или несколько способов восстановления, то выбор из них оптимального проводится по технико-экономическому показателю, численно равному отношению себестоимости восстановления к коэффициенту долговечности для этих способов. Окончательному выбору подлежит тот способ, который обеспечивает минимальное значение этого отношения:

КД = СВДmin(2)

где КД – коэффициент долговечности восстановленной поверхности;

СВ – себестоимость восстановления соответствующей поверхности, руб.

При обосновании способов восстановления поверхностей значение себестоимости восстановления СВ определяется из выражения

СВ = СУ*S, (3)

где СУ – удельная себестоимость восстановления, руб./см2;

S – площадь восстанавливаемой поверхности, см2.

Выберем рациональный способ восстановления шатунных и коренных шеек коленчатого вала.

По групповой номенклатуре деталей коленчатый вал относится к классу деталей круглые стержни. Детали данного класса характеризуются цилиндрической формой при длине, значительно превышающей их диаметр. Материалом для них чаще всего служит углеродистая или высококачественная легированная сталь. Рабочие поверхности подвергают термической или химико-термической наплавкой, наплавкой под слоем флюса, в среде углекислого газа или электроконтактной приваркой ленты.

Рассчитаем стоимость восстановления каждого способа по формуле (3), учитывая , что удельная себестоимость восстановления составляет (руб./см2): вибродуговая наплавка – 0,8; наплавка под слоем флюса – 1,2; наплавка в среде углекислого газа – 0,6; электроконтактная приварка ленты – 0,85.

Произведем расчет площадей шеек вала (SШ) по формуле ( всего восстановлению подвергают три шейки):

SШ = π∙Di∙bi(4)

где Di – диаметр i-ой шейки;

bi – ширина i-ой шейки.

SШ = 3,14∙(78,25∙40+88,25∙44,1)=22048,5 мм2 =220,485 см2.

Рассчитываем стоимость для вибродуговой наплавки

СВ1 = 220,485∙0,8 = 176,388 руб.

Для наплавки под слоем флюса

СВ2 = 220,485∙1,2 = 264,582 руб.

Для наплавки в среде углекислого газа

СВ3 = 220,485∙0,6 = 132,291 руб.

Для электроконтактной приварки ленты

СВ4 = 220,485∙0,85 = 187,412 руб.

Целесообразность того или иного метода определим из выражения (2).

Для вибродуговой наплавки

176,388/0,85 = 208,515 руб.

Для наплавки под слоем флюса

264,582/0,9 = 293,98 руб.

Для наплавки в среде углекислого газа

132,291/0,85 = 155,636 руб.

Для электроконтактной приварки ленты

187,412/0,9 = 208,235 руб.

Из сделанных расчетов видно, что самыми целесообразными методами восстановления коренных и шатунных шеек коленчатого вала будут наплавка в среде углекислого газа и электроконтактная приварка лентой. При наличии на предприятии оборудования для электроконтактной приварки ленты возможно избежать затрат на приобретение нового оборудования. Поэтому принимаем для восстановления шеек вала электроконтактную приварку ленты. С точки зрения организации производства, чем меньше количество способов, используемых для восстановления различных изнашиваемых поверхностей детали, тем меньше требуется видов оборудования, выше его загрузка, а следовательно, и выше эффективность производства.

4.2 Определение режимов нанесения покрытия, выбор материалов и технологического оборудования, механической обработки и норм времени выполняемых операций

4.2.1 Электроконтактная приварка ленты и напекание порошков.

Для приварки ленты к детали необходимы импульсы сварочного тока следующих параметров (обеспечивающие 6…7 сварных точек на 1см длины сварного шва):

а) для ленты толщиной 0,3 мм амплитуда импульса сварочного тока 14500…15900 А, длительность импульсов тока 0,008…0,009 с;

б) для ленты толщиной 0,4 мм амплитуда импульса сварочного тока 16000…17500 А, длительность импульсов тока 0,0085…0,01 с;

в) для ленты толщиной 0,4 мм, привариваемой в два слоя одновременно, амплитуда импульса тока 18000…19500 А, длительность импульсов тока 0,009…0,011 с.