Смекни!
smekni.com

Проектирование судового двигателя внутреннего сгорания (стр. 5 из 7)

Где: D=390мм – диаметр цилиндра

S=470мм – ход поршня

L=3042мм – расстояние между центрами рамовых подшипников

А=51.7

В=82

С=1.19

- безразмерный коэффициент.

3. Диаметр шатунный (dш) и рамовой (dр) шейки:

dш=250мм;dр=240мм – принимаем, в соответствии с двигателем прототипом.

4. Толщина щеки:

t³0,56×dш=0.15м.

5. Ширина щеки:

h³1,33×dш=0.34м.

6. Длина шатунной шейки:

lш=(0,65...1)×dш=0.7×0.25=0.175м.

7. Длина рамовой шейки:

lр=(0,85...1)×dр=0.9 ×0.24=0.216м.

8. Расстояние между осями коренной и шатунной шеек R, между средним слоем щеки и серединой рамового подшипника а2, между серединами рамовых шеек а1:

R=0.235м; а2=0.180м; а1=0.640м – принимаем в соответствии с прототипом.

9. Радиусы закруглений:

- у мотылевой шейки: r1³0,07dш=20мм

- у рамовой шейки: r2³0,5dр=120мм

- у фланца: r3³0,125dр=30мм

10. Размеры вала проверяют для двух опасных положений:

- в ВМТ, когда на мотыль действуют наибольшая радиальная сила и касательная сила, передаваемая от цилиндров, расположенных впереди;

- при повороте мотыля на угол, соответствующий максимальному касательному усилию (угол a2).

11. Значение углов (абсцисс), ординаты которых подлежат суммированию в первом опасном положении, соответствуют: 0, 0+a0, 0+a01,.... (число углов равно числу цилиндров i). a0 - угол между двумя последующими вспышками равен:

a0=720/i=720/6=120°

12. Значения углов, ординаты которых подлежат суммированию в первом опасном положении: 0°, 120°, 240°, 360°, 480°, 600°.

Значения углов, ординаты которых подлежат суммированию во втором опасном положении: 19°, 159°, 259°, 379°, 499°, 619°.

13. Определение наиболее нагруженного мотыля в 1 опасном положении (заполнение таблицы производят в порядке последовательности вспышек):

Значения Рр и Рк при разных углах поворота мотыля для 1 опасного положения:

Угол b можно найти из уравнения:

Таблица 3

№мотыля Pp иPk [Мн/
]
Угол поворота мотыля, град. порядок вспышек
0720 120 240 360 480 600
1. Pk 0 0.745 -0.832 0 1.015 -0.724 1.
Pp -1.645 -0.683 0.763 2.432 -0.93 0.683
2. Pk -0.832 0 1.015 -0.724 0 0.745 5.
∑ Pk -0.832 0.745 0.183 -0.724 1.015 0.021
Pp 2.432
3. Pk 1.015 -0.724 0 0.745 -0.832 0 3.
∑ Pk 0.183 0.021 0.183 0.021 0.183 0.021
Pp 2.432
4. Pk 0.745 -0.832 0 1.015 -0.724 0 6.
∑ Pk 0.928 -0.811 0.183 1.036 -0.541 0.021
Pp 2.432
5. Pk -0.724 0 0.745 -0.832 0 1.015 2.
∑ Pk 0.204 -0.811 0.928 0.204 -0.541 1.036
Pp 2.432
6. Pk 0 1.015 -0.724 0 0.745 -0.832 4.
∑ Pk 0.204 0.204 0.204 0.204 0.204 0.204
Pp 2.432

Произведя суммирование Рк цилиндров, расположенных впереди, т.е. значений Рк, вписанных в таблицу выше строки данного мотыля, находят мотыль, передающий наибольшее касательное усилие. Из таблицы видно, что при максимальном значении Рр=2.432 МН/м2 наибольшее касательное усилие от других цилиндров, равное SРк=1.015МН/м2, передаёт мотыль четвёртого цилиндра. Таким образом, в первом опасном положении следует рассчитывать мотыль четвёртого цилиндра, как передающий наибольшее касательное усилие от цилиндров, расположенных впереди.

14. Определения наиболее нагруженного мотыля во втором опасном сечении: суммируем ординаты кривой касательных усилий для угла поворота a1 с учётом последовательности вспышек. Вносимое значение Рр может быть определено как:

.

Из полученной таблицы находят наиболее неблагоприятное сечение радиальной и касательной сил.

Таблица 4

№мотыля Pp иPk [Мн/
]
Угол поворота мотыля, град. порядок вспышек
21.6 141.6 261.6 381.6 501.6 621.6
1. Pk -0.648 0.557 -0.950 1.726 0.670 -0.648 1.
Pp -1.278 -0.986 -0.398 3.405 -1.186 -0.271
2. Pk -0.950 1.726 0.670 -0.648 -0.648 0.557 5.
∑ Pk -1.598 2.283 -0.280 1.078 0.022 -0.091
Pp 3.405
3. Pk 0.670 -0.648 -0.648 0.557 -0.950 1.726 3.
∑ Pk -0.928 1.635 -0.928 1.635 -0.928 1.635
Pp 3.405
4. Pk 0.557 -0.950 1.726 0.670 -0.648 -0.648 6.
∑ Pk -0.371 0.685 0.798 2.305 -1.576 0.987
Pp 3.405
5. Pk -0.648 -0.648 0.557 -0.950 1.726 0.670 2.
∑ Pk -1.019 0.037 1.355 1.355 0.150 1.657
Pp 3.405
6. Pk 1.726 0.670 -0.648 -0.643 0.557 -0.950 4.
∑ Pk 0.707 0.707 0.707 0.707 0.707 0.707
Pp 3.405

Первое опасное положение.

Расчёт шатунной шейки.

Рис. 3 - Расчет шатунной шейки

15. Сила давления в конце горения:

16. Момент, изгибающий шатунную шейку:

17. Напряжение изгиба:

где Wиз - осевой момент сопротивления [м3] для сплошной шейки равен W=0,1d3.

18. Наибольшее касательное усилие от расположенных (выше) впереди цилиндров:

19. Момент, скручивающий мотылёвую шейку:

Мкрк×R=155.6×0,125=19450 Нм

20. Напряжение кручения:

21. Эквивалентное напряжение в шейке:

22. Условие прочности выполняется, т.к.:

s =66.47МПа <[s]=120МПа.

Расчёт рамовой шейки.

Рис. 4 - Расчет рамовой шейки

23. Изгибающий момент:

24. Напряжение изгиба:

25. Напряжение кручения:

26. Эквивалентные напряжения:

27. Условие прочности выполняется:

s =32.24 МН/м2 <[s]=120 МН/м2.

Расчёт щеки.

Рис. 5 - Расчет щеки

28. Изгибающий момент:

29. Момент сопротивления на широкой стороне щеки:

м3

30. Напряжение изгиба:

,

31. Момент сопротивления на узкой стороне щеки:

м3

32. Напряжение изгиба на узкой стороне щеки:

33. Напряжение сжатия от силы Pz/2:

34. Суммарное напряжение:

s =sиз.щ.+sиз.уз.+sсж.=17.7+30+6.2=53.9МПа

35. Условие прочности выполняется:

s =53.9 МН/м2 <[s]=120 МН/м2.

Второе опасное положение.

Расчёт шатунной шейки.

36. Наибольшее касательное усилие одного цилиндра:

37. Наибольшее радиальное усилие одного цилиндра:

38. Изгибающий момент от наибольшего касательного усилия:

39. Изгибающий момент от наибольшего радиального усилия:

40. Напряжение изгиба от действия Миз.к.: