Смекни!
smekni.com

Электроснабжение железнодорожного предприятия (автоматизация учёта электроэнергии) (стр. 6 из 8)

Координаты центра тяжести всех нагрузок депо рассчитаны с учётом расчётов по другим цехам и участкам. С учётом расчётов выполненными студентом Свиридовым П.М. определим координаты центра тяжести всех нагрузок депо, который оказался в точке с координатами:

ХД = 50,5 м и YД =37,5 м.

Для уменьшения потерь электроэнергии в низковольтной сети питающая подстанция должна быть максимально приближена к центру нагрузок, однако для удешевления проекта реконструкции системы электроснабжения сохраним существующую подстанцию в отдельном кирпичном строении на расстоянии 0,1 км от ввода низковольтных кабелей в помещения депо со стороны кернового отделения. Следовательно, место расположения ТП Депо оказывается смещено от центра нагрузок депо на 138,0 м.

Схема питающей низковольтной сети депо приведена на рисунке 1.3.

Электрические аппараты и проводники выбираются по уровню изоляции, допустимому нагреву токоведущих частей в продолжительных режимах, а проводники, за исключением проводников сборных шин электроустановок, также по экономически целесообразной нагрузке [3]. Для электрических аппаратов используются следующие соотношения

UНОМUСЕТИ НОМ. (1.15)

IНОМIНРМ. РАСЧ. (1.16)

где UНОМ - номинальное напряжение аппарата, кВ;

UСЕТИ НОМ - номинальное напряжение сети, кВ;

IНОМ - номинальный ток аппарата; А;

IНРМ. РАСЧ - расчетные токи нормального, послеаварийного и ремонтного режимов, А.

Для проводников используются соотношения:

UНОМUСЕТИ НОМ. (1.17)

Для неизолированных проводников UНОМ определяется уровнем опорной изоляции. Сечение проводника определится по формуле (1.18):

S = IНОРМ. РАСЧ. /JЭКН,(1.18)

где S - сечение проводника, мм2;

JЭКН - нормируемая экономическая плотность тока, А/мм2 [4].

Проверке по экономической плотности тока не подлежат сети напряжением до 1 кВ при числе часов использования максимума нагрузки до 4000…5000 в год [4]. Большинство цехов депо работают по односменному графику и число часов максимума нагрузки достигает не более 2100 часов в год.

Номинальный ток электрического аппарата и продолжительно допустимый ток проводника устанавливаются при определенной нормированной температуре окружающей среды.

Для электрических аппаратов нормированная температура окружающей среды tОКР. НОМ = 35 0С; для проводников, проложенных на воздухе и в кабельных каналах, tОКР. НОМ = 25 0С; для проводников, проложенных в земле или в воде, tОКР. НОМ = 15 0С [4].

Питающая низковольтная сеть соединяет распределительные и силовые пункты с КТП и источником питания предприятия. В депо она выполняется кабелями в кабельных каналах и по стенам помещений в коробах. Сечения проводников, питающих группы ЭП, выбираем по длительно – допустимому току

IРАСЧIДЛ. ДОП., (1.19)

где IРАСЧ – расчетный ток, за который принимается IМАХ группы ЭП, А;

IДЛ. ДОП – длительно – допустимый ток по нагреву для проводника данного сечения, определяемый по таблицам ПУЭ [4] в зависимости от конструкции и условий прокладки, А.


Рисунок 1.3 – Схема магистральной сети депо 380/220 В

При прокладке кабелей в зависимости от условия прокладки по данным приведённые в таблицах ПУЭ [4] в расчёт вводятся коэффициенты. Так, для четырёхжильных кабелей вводится коэффициент 0,92 для длительно допустимого тока для трёхжильных кабелей.

Например, максимальный ток нагрузки группы ЭП пантографного отделения и административно-бытового корпуса, питаемой от СП-8 в разделе 1.1 по таблице 1.2 определён как:

IM = 144,0 А.

По таблицам ПУЭ [4] определяем, что при прокладке в воздухе для кабеля марки АВВГ – 3×95 + 1×50 длительно допустимый ток IДЛ. ДОП = 170 А.

С учётом коэффициента 0,92 для этого кабеля IДЛ. ДОП = 156 А.

Данные по результатам расчёта магистральных низковольтных кабелей приведены в таблице 1.5.


Таблица 1.5 – Данные по кабелям магистральной низковольтной сети

Путь питающей сети Ток группы ЭП, IМ, А Марка кабеля Сечение кабеля, мм2 Допустимый ток, IДЛ. ДОП, А
ТП – СП-1 46,0 АВВГ 4×16 55,0
ТП – СП 2 130,0 АВВГ 3×95 + 1×50 156,0
ТП – СП-3 35,0 АВВГ 4×10 39,0
ТП – СП-4 29,0 АВВГ 4×10 39,0
ТП – СП-5 17,0 АВВГ 4×6 29,0
ТП – СП-6 46,0 АВВГ 4×16 55,0
ТП – СП-7 52,0 АВВГ 4×16 55,0
ТП – СП-8 144,0 АВВГ 3×95 + 1×50 156,0

Распределительная низковольтная сеть состоит из присоединений отдельных электроприемников к силовым пунктам (СП). Она выполняется в виде электропроводок в пластмассовых или тонкостенных водо-газопроводных стальных трубах изолированными одножильными проводами или четырёхжильными кабелями [3]. Для электрических приемников повторно – кратковременного режима сечение питающих проводов должно выбираться по таблицам ПУЭ [4].

Если в результате выбора сечение алюминиевых проводов получается S ≤ 10 мм2, то провод выбирают по номинальному току электроприемника, IРАСЧ = IПАСППВ = 100% не приводится), а если S ≥ 16 мм2 то расчетный ток определяется, А

. (1.20)

Этим учитывается тепловая инерция проводников больших сечений.

Для асинхронных двигателей, генераторов, А

. (1.21)

Сечение проводников отдельных ЭП выбирается по условию

, (1.22)

где IДОП.ПР - длительно-допустимый ток проводника, А.

Например, определим сечение проводов необходимых для электроснабжения шлифовального станка (ЭП 37) с рН = 7,6 кВт. По формуле (1.20) определяем: IДЛ. ДОП = 15,2 А. Следовательно питающую сеть для ЭП 37 необходимо выполнить четырьмя алюминиевыми одножильными проводами марки АПРТО проложенными в трубе с сечением жил по 2,5 мм. Длительно допустимый ток для таких проводов составляет IДОП.ПР = 19 А [4].

Для генератора токов высокой чатоты с рН = 60,0 кВт и ПВ = 0,25, установленного в кузнечном отделении (ЭП №56) расчётный ток определится по формуле (1.20)

= 69,0 А.

Следовательно, от СП-2 к этому электроприёмнику необходимо проложить четыре одножильных алюминиевых провода сечением жил 25 мм2 и с длительно-допустимым током IДОП.ПР = 70 А [4].

1.3 Расчёт токов аварийных режимов

При расчетах токов короткого замыкания (КЗ) в электроустановках переменного тока напряжением до 1 кВ допускается:

- использовать упрощенные методы расчетов, если их погрешность не превышает 10 %;

- максимально упрощать и эквивалентировать всю внешнюю сеть;

- не учитывать ток намагничивания трансформаторов;

- не учитывать насыщение магнитных систем электрических машин;

- принимать коэффициенты трансформации трансформаторов равными отношению средних номинальных напряжений тех ступеней напряжения, которые связывают трансформаторы. При этом следует использовать следующую шкалу средних номинальных напряжений: 37,0; 20,0; 10,5; 6,3; 3,15; 0,69; 0,40; 0,23 кВ;

- не учитывать влияние синхронных и асинхронных электродвигателей или комплексной нагрузки [3].

На выбор расчетного вида КЗ оказывает влияние схема соединения обмоток силового трансформатора. При использовании трансформаторов, у которых обмотка высшего напряжения соединена в треугольник, ток однофазного металлического КЗ на шинах низшего напряжения может оказаться больше тока трехфазного металлического КЗ.

Токи КЗ в электроустановках напряжением до 1 кВ рекомендуется рассчитывать в именованных единицах. При составлении эквивалентных схем замещения параметры элементов исходной расчетной схемы следует приводить к ступени напряжения сети, на которой находится точка КЗ, а активные и индуктивные сопротивления всех элементов схемы замещения выражать в мил-лиомах [3].

Методика расчета начального действующего значения периодической составляющей тока КЗ в электроустановках до 1 кВ зависит от способа электроснабжения - от энергосистемы или автономного источника.

При расчете токов КЗ в электроустановках, получающих питание непосредственно от сети энергосистемы, допускается считать, что понижающие трансформаторы подключены к источнику неизменного по амплитуде напряжения через эквивалентное индуктивное сопротивление.

Расчеты должны производиться по режимам, соответствующим прохождению по рассматриваемому участку и наибольшего или наименьшего тока КЗ. Так, например, проверка электротехнического оборудования на термическое и электродинамическое действие токов КЗ должна производиться по наиболее тяжелому режиму, когда по рассматриваемому элементу проходит максимальный ток. Напротив, проверка чувствительности релейной защиты производится по наименьшему току соответствующему минимальному режиму.