Смекни!
smekni.com

Сигнализация в сетях железнодорожной связи (стр. 11 из 13)

• специфицировать различные варианты поведения системы. Рассмотренные в первом параграфе данной главы методы спецификации протоколов на SDL используют для описания их поведения диаграммы состояний. Однако в связи с тем, что тестирование соответствия

Рис.2.21. Общая архитектура тестирования TTCN

(конформности) в основном ориентировано на наблюдение и управление последовательных взаимодействий в точке интерфейса между уровнями модели взаимодействия открытых систем (в точке доступа к услуге), целесообразно также специфицировать поведение тестируемой системы и в виде дерева, имеющего ветви для всех возможных вариантов последовательностей взаимодействий, которые могут существовать между двумя данными состояниями протокола.

В TTCN такое дерево взаимодействий называется деревом поведения. Структура дерева представляется посредством увеличивающихся уровней отступов для показа продвижения по дереву относительно времени (рис. 2.22).

Узел дерева называется линией поведения. Линия поведения содержит следующие компоненты:

• номер линии,

• метку,

• строку описаний,

• ссылку на ограничения,

• вердикт,

• комментарий линии поведения.

Линии поведения специфицируются в специальных таблицах, назы­ваемых таблицами динамического поведения.

Рис.2.22. Представление дерева TTCN посредством сдвига

Поведение тестируемой системы (например, прием или посылка абстрактных примитивов) описывается при помощи описаний TTCN. Описания бывают трех типов:

• события,

• действия,

• квалификаторы.

События. Некоторые описания TTCN могут оказаться успешными или неуспешными в зависимости от наступления тех или иных событий. Существуют два типа событий: входные-события и таймерные события. Пример входных событий - приход абстрактного примитива в определенной точке управления и наблюдения. Таймерное событие представляет собой истечение таймера, специфицированного протоколом. Для событий в TTCN используются следующие описания:

. RECEIVE,

. OTHERWISE,

. TIMEOUT.

Действия. Некоторые описания всегда будут успешными. Такие описания называются действиями, которые исполняются тестовой системой. Предполагается, что они всегда исполняются успешно. Для действий в TTCN используются следующие описания:

. SEND,

. IMPLICIT SEND,

. ASSIGNMENTJJST,

. TIMER_OPERATION,

. GOTO.

Квалификаторы. Строки описаний могут включать описания квалификаторов, то есть булевские выражения. Никакие события не могут совпасть и никакие действия не будут исполнены, пока значение квалификатора не станет равным TRUE.

Как уже отмечалось выше, TTCN был разработан с привязкой к абстрактному синтаксису ASN.l (ISO/IEC 8824:1990). Однако не существует обязательной связи между типами, используемыми в TTCN и в ASN.l. Это позволяет конструировать типы данных, абстрактные примитивы ASP и блоки данных протокола PDU и без использования ASN.l, если разработчик теста не желает этого (например, для протоколов низкого уровня, , для спецификации которых обычно не используется ASN.l). Однако здесь типы данных TTCN рассматриваться не будут.

TTCN поддерживает асинхронную модель связи. Связь между тестовыми компонентами ТС и тестируемой системой ЮТ обеспечивается через точки управления и наблюдения (PCOs - Points of Control and Observation). Связь между самими тестовыми компонентами осуществляется через координационные точки (CPs - Coordination Points).

Для описания модели связи используется система с очередями со сле­дующими свойствами:

• каждая точка РСО/СР имеет две бесконечные очереди FIFO: одна очередь для SEND и одна очередь для RECEIVE,

• ровно два объекта должно быть подсоединено к одной точке РСО или СР,

• очередь SEND одного-объекта является очередью RECEIVE другого объекта, и наоборот.

Описание SEND позволяет создателю теста описать необходимость :

передачи ASP определенного типа через данную точку РСО. Описание SEND обозначается следующим образом: РСО_Identifier ! ASP_Identifier.

Описание RECEIVE позволяет создателю теста описать необходимость приема абстрактного примитива ASP определенного типа в данной точке контроля и наблюдения РСО. Описание RECEIVE обозначается PCO_Identifier ? ASP_Identifier.

ASP задаются в соответствии со стандартным описанием услуги, предоставляемой данным уровнем модели OSI. PDU описываются определениями, заданными в спецификации конкретного протокола. В случае необходимости использования нестандартных PDU они должны быть определены соответствующей таблицей.

Язык TTCN непосредственно связан с рассматриваемыми в главе 11 протокол-тестерами, что и обусловило несколько более подробное (хотя, разумеется, отнюдь не достаточное) его описание в этой главе.

И в заключение настоящего параграфа следует пояснить еще один упомянутый в данной главе подход. Это техника объектного моделирования ОМТ, которая была предложена Джеймсом Рунбаугом в Риме в 1991 ни включает в себя три аспекта системного анализа: объектное моделирование, динамическое моделирование и функциональное моделирование.

Модель объекта ОМТ включает два вида диаграмм: диаграммы класса, которые основаны на хорошо известной системе обозначений взаимо­отношений логических объектов, расширенной объектно-ориентированными концепциями операций и наследования свойств, а также диаграммы инстанций, представляющие собой моментальные снимки системы.

Динамическая модель ОМТ также строится из диаграмм двух видов:

диаграмм событий и диаграмм перехода состояний.

функциональная модель состоит из схем информационных потоков, которые основываются на широко известной системе обозначений структурного анализа.

Прослеживаются следующие связи между объектной, динамической и функциональной моделями. В системном анализе объектная модель является центральной моделью ОМТ. Динамическая модель улучшает объектную модель тем, что определяет: когда устанавливаются и удаляются классы, когда вызываются операции с классами, когда имеется доступ к атрибутам и когда создаются, используются и удаляются связи. Функциональная модель предлагает новый взгляд на услуги, обеспечиваемые объектной моделью, путем объединения единичных операций с классами в более крупные процессы или, наоборот, путем детализации сложных операций с классами разбиением на более простые процессы.

ОМТ, как это отмечается самими авторами, не очень подходит для архитектурного проектирования в тестирования, но удобна для разработок информационных систем, примером которой може1 служить база ин­формации СОТСБИ, рассмотренная в последнем параграфе главы 11.


ЛИТЕРАТУРА

1. Аваков Р.А., Кооп М.Ф., Лившиц Б.С., Подвидз М.М. Городские координатные автоматические телефонные станции и подстанции. М.: Связь, 1971.

2. Аваков Р.А., Лившиц Б.С., Подвидз М.М. Координатные АТС. М.: Связь, 1966.

3. Аваков Р.А., Шилов О.С., Исаев В.И. Основы автоматической коммутации. М.: Радио и связь, 1981.

4. Агафонов В.Н. Спецификация программ: понятийные средства и их организация. Новосибирск: Наука, 1987.

5. Апостолова Н.А., Арцишевский В.В., Гольдштейн Б.С., Дымарский Я.С., Сибирякова Н.Г. Научно-технические аспекты организации сертификационных испытаний АТС местных сетей. Электросвязь, 1996.—№10.

6. Архангельская А.А., Ершов В.А., Нейман В.И. Автоматическая коммутация каналов связи. М.: Связь, 1970.

7. Арцишевский В.В. и др. Промежуточные регистры АТС для исходящей междугородной связи по заказно-соединительным линиям. М.: Связь, 1971.

8. Бакалейщик Ф.Б, Брунина Е.А., Зайончковский Е.А. и др. Автоматическая междугородная и сельская телефонная связь. Под ред. Зайончковского Е.А. М.: Связь, 1976.

9. Башарин Г.П., Харкевич А.Д., Шнепс М.А. Массовое обслуживание в телефонии. М.: Наука, 1968.

10. Белоус Б.П. Высокочастотная связь по линиям электропередачи. М.:Госэнергоиздат, 1952.

11. Берглунд С. Новые системы АТС. М.: Связьиздат, 1956.

12. Березович Л.А., Зайончковский Е.А., Узлов Е.Н. Модернизированная аппаратура полуавтоматической связи одночастотной системы для внутриобластных сетей АМСО-60-У. М.: Связьиздат, 1962.

13. Берлин А.Н. Алгоритмическое обеспечение АТС. М.: Радио и связь, 1986.

14. Бернштейн С.С. К анализу алгоритма АТС. Сборник трудов НИИТС,1963.—№12.

15. БлэкЮ. Сети ЭВМ: протоколы, стандарты, интерфейсы. М.: Мир, 1990.

16. Брукс Ф.П. Как проектируются и создаются программные комплексы. Мифический человеко-месяц: очерки по системному программированию. М.: Наука, 1979.

17. Булгак В.Б., Варакип Л.Е., Ивашкевич Ю.К., Москвитин В.Д., Оснпов В.Г. Концепция развития связи Российской Федерации. М.: Радио и связь, 1995.

18. Бухгейм Л.Э., Максимов Г.З., Пшеничников А.П. Автоматическая сельская телефонная связь. М.: Связь, 1976.

19. Вайрадяи А.С., Коровин А.В., Удалов В.Н. Эффективное функционирование управляющих мультипроцессорных систем. М.: Радио и связь, 1984.

20. Васильева Л.С. и др. Усовершенствованные городские координат­ные АТС типа АТСК-У. Принципы построения. М.: Радио и связь, 1986.

21. Васильченко А.И., Денисьева О.М., Жарков М.А., Стоянов М.Н., Урм Э.Э., Юнаков П.А. Система телефонной сигнализации по общему каналу (система ОКС). М.:Связь, 1980.

22. Ведомственные нормы технологического проектирования. Проводные средства связи. Часть 2. Станции городских и сельских телефонных сетей. М.: Связь, 1980.

23. Вемян Г.В. Качество телефонной передачи и его оценка. М.: Связь. 1970.

24. Вознесенский Б.Н., Зайончковский Е.А., Прытикова З.И., Соловьев Ш.Г. Аппаратура полуавтоматической междугородной телефонной связи. Связьиздат, 1957.

25. Вознесенский Б.Н., Логинов Д.Ф., Гранат М.Б. Промежуточное оборудование для совместной работы АТС машинной и шаговой систем. Связьиздат, 1954.

26. Гантер Р. Методы управления проектированием программного обес­печения. М.: Мир, 1981.

27. Голубев А.Н., Иванов Ю.П., Левин Л.С. Аппаратура ИКМ-ЗОА. Под ред. Иванова Ю.П. и Левина Л.С. М.: Радио и связь, 1983.

28. Голубев А.Н., Лугов М.Ф. Принципы построения ГТС на базе АТС с программным управлением. Вестник связи, 1987. —№8.